Journal of Phase Equilibria and Diffusion

, Volume 32, Issue 1, pp 30–38

Assessment of the Atomic Mobilities in fcc Cu-Fe and Cu-Ti Alloys

  • J. Wang
  • C. Leinenbach
  • L. B. Liu
  • H. S. Liu
  • Z. P. Jin
Basic and Applied Research


The experimentally measured diffusion coefficients of fcc Cu-Fe and Cu-Ti alloys in the published literature were reviewed critically in the present work. On the basis of the available thermodynamic information, the atomic mobilities of Cu, Fe, and Ti in fcc Cu-Fe and Cu-Ti alloys as a function of temperature and composition were assessed in terms of the CALPHAD method using the DICTRA® software. The optimized mobility parameters are presented. The calculated diffusion coefficients show an excellent agreement with the experimental data. The composition-distance profiles of the Cu-Ti binary diffusion couples reported in the literature were also predicted using the assessed mobility parameters. Overall good agreement is achieved between the experimental results and simulations.


atomic mobility CALPHAD Cu-based alloys DICTRA diffusion 


  1. 1.
    H.E. Hintermann and A.K. Chattopadhyay, New Generation Superabrasive Tool with Monolayer Configuration, Diam. Relat. Mater., 1992, 1, p 1131-1141CrossRefADSGoogle Scholar
  2. 2.
    R. Shiue, S. Buljan, and T. Eagar, Abrasion Resistant Active Braze Alloys for Metal Single Layer Technology, Sci. Technol. Weld. Join., 1997, 2, p 71-78CrossRefGoogle Scholar
  3. 3.
    T. Yamazaki and A. Suzumura, Role of the Reaction Product in the Solidification of Ag-Cu-Ti Filler for Brazing Diamond, J. Mater. Sci., 1998, 33, p 1379-1384CrossRefADSGoogle Scholar
  4. 4.
    F.A. Khalid, U.E. Klotz, H.-R. Elsener, B. Zigerlig, and P. Gasser, On the Interfacial Nanostructure of Brazed Diamond Grits, Scr. Mater., 2004, 50, p 1139-1143CrossRefGoogle Scholar
  5. 5.
    C.Y. Wang, Y.M. Zhou, F.L. Zhang, and Z.C. Xu, Interfacial Microstructure and Performance of Brazed Diamond Grits with Ni-Cr-P Alloy, J. Alloys Compd., 2009, 476, p 884-888CrossRefGoogle Scholar
  6. 6.
    J.C. Sung and M. Sung, The Brazing of Diamond, Int. J. Refract. Met. Hard Mater., 2009, 27, p 382-393CrossRefGoogle Scholar
  7. 7.
    S.M. Chen and S.T. Lin, Brazing Diamond Grits onto a Steel Substrate Using Copper Alloys as the Filler Metals, J. Mater. Eng. Perform., 1996, 5, p 761-766CrossRefGoogle Scholar
  8. 8.
    W.C. Li, C. Liang, and S.T. Lin, Epitaxial Interface of Nanocrystalline TiC Formed Between Cu-10Sn-15Ti Alloy and Diamond, Diam. Relat. Mater., 2002, 11, p 1366-1373CrossRefADSGoogle Scholar
  9. 9.
    S.F. Huang, H.L. Tsai, and S.T. Lin, Effects of Brazing Route and Brazing Alloy on the Interfacial Structure Between Diamond and Bonding Matrix, Mater. Chem. Phys., 2004, 84, p 251-258CrossRefGoogle Scholar
  10. 10.
    H.-R. Elsener, U.E. Klotz, F.A. Khalid, D. Piazza, and M. Kiser, The Role of Binder Content on Microstructure and Properties of a Cu-Base Active Brazing Filler Metal for Diamond and cBN, Adv. Eng. Mater., 2005, 7, p 375-380CrossRefGoogle Scholar
  11. 11.
    U.E. Klotz, C.L. Liu, F.A. Khalid, and H.R. Elsener, Influence of Brazing Parameters and Alloys Composition on Interface Morphology of Brazed Diamond, Mater. Sci. Eng. A, 2008, 495, p 265-270CrossRefGoogle Scholar
  12. 12.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York, 1970Google Scholar
  13. 13.
    B. Sundman, B. Jansson, and J.-O. Andersson, The Program for Optimization, CALPHAD, 1985, 9, p 153-190CrossRefGoogle Scholar
  14. 14.
    J.-O. Andersson, L. Höglund, B. Jönsson, and J. Ågren, Computer Simulation of Multicomponent Diffusional Transformations in Steel, Fundamentals and Applications of Ternary Diffusion, G.R. Prudy, Ed., Pergamon Press, New York, 1990, p 153-163 Google Scholar
  15. 15.
    J.-O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72, p 1350-1355CrossRefADSGoogle Scholar
  16. 16.
    A. Borgenstam, A. Engström, L. Höglund, and J. Ågren, DICTRA, A Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilb., 2000, 21, p 269-280CrossRefGoogle Scholar
  17. 17.
    Z.-K. Liu, L. Höglund, B. Jönsson, and J. Ågren, An Experimental and Theoretical Study of Cementite Dissolution In An Fe-Cr-C Alloy, Metall. Mater. Trans. A, 1991, 22, p 1745-1752CrossRefADSGoogle Scholar
  18. 18.
    A. Engström, L. Höglund, and J. Ågren, Computer Simulation of Diffusion in Multiphase System, Metall. Mater. Trans. A, 1994, 25A, p 1127-1134CrossRefADSGoogle Scholar
  19. 19.
    T. Helander, J.-O. Nilsson, and J. Ågren, An Experimental and Theoretical Investigation of Diffusion Across a Joint of Two Multicomponent Steels, ISIJ Int., 1997, 37, p 1139-1145CrossRefGoogle Scholar
  20. 20.
    B.-J. Lee, Numerical Simulation of Diffusional Reactions Between Multiphase Alloys With Different Matrix Phases, Scr. Mater., 1999, 40, p 573-579CrossRefGoogle Scholar
  21. 21.
    Y. Du and J.C. Schuster, An Effective Approach to Describe Growth of Binary Intermediate Phases With Narrow Ranges of Homogeneity, Metall. Mater. Trans. A, 2001, 32, p 2396-2400CrossRefGoogle Scholar
  22. 22.
    L. Zhang, Y. Du, Y. Ouyang, H. Xu, X.-G. Lu, Y. Liu, Y. Kong, and J. Wang, Atomic Mobilities, Diffusivities and Simulation of Diffusion Growth in the Co-Si System, Acta Mater., 2008, 56, p 3940-3950CrossRefGoogle Scholar
  23. 23.
    Y.J. Liu, L.J. Zhang, and Y. Du, Diffusion Mobilities in fcc Cu-Au and fcc Cu-Pt Alloys, J. Phase Equilib. Diffus., 2009, 30, p 136-145CrossRefGoogle Scholar
  24. 24.
    Y.J. Liu, D. Liang, Y. Du, L.J. Zhang, and D. Yu, Mobilities and Diffusivities in fcc Co-X (X = Ag, Au, Cu, Pd and Pt) Alloys, CALPHAD, 2009, 33, p 695-703CrossRefGoogle Scholar
  25. 25.
    J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, Assessment of Diffusion Mobilities in fcc Cu-Ni Alloys, CALPHAD, 2008, 32, p 94-100CrossRefGoogle Scholar
  26. 26.
    J. Wang, C. Leinenbach, H.S. Liu, L.B. Liu, M. Roth, and Z.P. Jin, Re-assessment of Diffusion Mobilities in the Face-Centered Cubic Cu-Sn Alloys, CALPHAD, 2009, 33, p 704-710CrossRefGoogle Scholar
  27. 27.
    D.D. Liu, L.J. Zhang, Y. Du, H.H. Xu, S.H. Liu, and L.B. Liu, Assessment of Atomic Mobilities of Al and Cu in fcc Al-Cu Alloys, CALPHAD, 2009, 33, p 761-768CrossRefGoogle Scholar
  28. 28.
    C.A. Mackliet, Diffusion of Iron, Cobalt and Nickel in Single Crystals of Pure Copper, Phys. Rev., 1958, 109, p 1964-1970CrossRefADSGoogle Scholar
  29. 29.
    J.G. Mullen, Isotope Effect in Intermetallic Diffusion, Phys. Rev., 1961, 121, p 1649-1658CrossRefADSGoogle Scholar
  30. 30.
    G. Barreu, G. Brunel, and G. Cizeron, Détermination des coefficients d’hétérodiffusion à dilution in finie du fer et du chrome dans le cuiure pur, C. R. Acad. Sci. Paris C, 1971, 272, p 618-621Google Scholar
  31. 31.
    J. Bernardini and J. Cabane, Dislocation Effect on Diffusion Kinetics of Iron, Cobalt and Ruthenium in Copper and Silver Single Crystals, Acta Metall., 1973, 21, p 1561-1569CrossRefGoogle Scholar
  32. 32.
    S.K. Sen, M.B. Dutt, and A.K. Barua, The Diffusion of Iron in Copper and of Nickel in Silver, Phys. Stat. Sol. (a), 1978, 45, p 657-663CrossRefADSGoogle Scholar
  33. 33.
    G. Salje and M. Feller-Kniepmeier, The Diffusion and Solubility of Iron in Copper, J. Appl. Phys., 1978, 49, p 229-232CrossRefADSGoogle Scholar
  34. 34.
    A. Almazouzi, M.P. Macht, V. Naundorf, and G. Neumann, Diffusion of Iron and Nickel in Single-Crystalline Copper, Phys. Rev. B, 1996, 54, p 857-863CrossRefADSGoogle Scholar
  35. 35.
    Y. Tomono and A. Ikushima, Diffusion of Iron in Single Crystals of Cooper, J. Phys. Soc. Jpn., 1958, 13, p 762-763CrossRefADSGoogle Scholar
  36. 36.
    G.R. Speich, J.A. Gula, and R.M. Fisher, Diffusivity and Solubility Limit of Copper in Alpha and Gamma Iron, The Electron Microprobe, T.D. MacKinley, K.F.J. Heinrich, and D.B. Wittry, Eds., Wiley, New York, 1966, p 525-542Google Scholar
  37. 37.
    S.J. Rothman, N.L. Peterson, C.M. Walter, and L.J. Nowicki, The Diffusion of Copper in Iron, J. Appl. Phys., 1968, 39, p 5041-5044CrossRefADSGoogle Scholar
  38. 38.
    G. Salje and M. Feller-Kniepmeier, The Diffusion and Solubility of Copper in Iron, J. Appl. Phys., 1977, 48, p 1833-1839CrossRefADSGoogle Scholar
  39. 39.
    K. Majima and H. Mitani, Lattice Grain Boundary Diffusion of Copper in γ-Iron, Trans. Jpn. Inst. Met., 1978, 19, p 663-668Google Scholar
  40. 40.
    O. Taguchi, M. Hagiwara, Y. Yamazaki, and Y. Iijima, Impurity Diffusion Al and Cu in γ-Fe, Defect Diffus. Forum, 2001, 194-199, p 91-96CrossRefGoogle Scholar
  41. 41.
    J.L. Bocquet, Effect of Iron on Copper Self-Diffusion, Acta Metall., 1972, 20, p 1347-1351CrossRefGoogle Scholar
  42. 42.
    S. Tsuji and K. Yamanaka, Interdiffusion Coefficients and Moving Rates of Phase Interfaces for Reaction Diffusion in the Cu-Fe System, J. Jpn. Inst. Met., 1974, 38, p 415-421Google Scholar
  43. 43.
    Y. Iijima, K. Hoshino, M. Kikuchi, and K. Hirano, Diffusion of Titanium in Copper, Metall. Mater. Trans. A, 1977, 8, p 997-1001CrossRefADSGoogle Scholar
  44. 44.
    B. Jönsson, Ferromagnetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85, p 498-501Google Scholar
  45. 45.
    B. Jönsson, Assessment of the Mobility of Carbon in fcc C-Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85, p 502-509Google Scholar
  46. 46.
    B. Jönsson, On Ferromagnetic Ordering and Lattice Diffusion—A Simple Model, Z. Metallkd., 1992, 83, p 349-355Google Scholar
  47. 47.
    B. Jönsson, Assessment of the Mobilities of Cr, Fe and Ni in Binary fcc Cr-Fe and Cr-Ni Alloys, Scand. J. Metall., 1995, 24, p 21-27Google Scholar
  48. 48.
    O. Redlich and A. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348CrossRefGoogle Scholar
  49. 49.
    L.S. Darken, Diffusion, Mobility and Their Interrelation through Free Energy in Binary Metallic Systems, Trans. AIME, 1948, 175, p 184-194Google Scholar
  50. 50.
    Q. Chen and Z.P. Jin, The Fe-Cu System: A Thermodynamic Evaluation, Metall. Mater. Trans. A, 1995, 26, p 417-426CrossRefGoogle Scholar
  51. 51.
    K. Kumar, I. Ansara, P. Wollants, and L. Delaey, Thermodynamic Optimisation of the Cu-Ti System, Z. Metallkd., 1996, 87, p 666-672Google Scholar
  52. 52.
    G. Ghosh, Dissolution and Interfacial Reactions of Thin-Film Ti/Ni/Ag Metallizations in Solder Joints, Acta Mater., 2001, 49, p 2609-2624CrossRefGoogle Scholar
  53. 53.
    N. Matan, H.M.A. Winand, P. Carter, M. Karunaratne, P.D. Bogdanoff, and R.C. Reed, A Coupled Thermodynamic/Kinetic Model for Diffusional Processes in Superalloys, Acta Mater., 1998, 46, p 4587-4600CrossRefGoogle Scholar
  54. 54.
    C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Development of a Diffusion Mobility Database for Ni-Base Superalloys, Acta Mater., 2002, 50, p 775-792CrossRefGoogle Scholar
  55. 55.
    J. Wang, C. Leinenbach, H.S. Liu, L.B. Liu, M. Roth, and Z.P. Jin, Diffusion and Atomic Mobilities in fcc Ni-Sn Alloys, J. Phase Equilib. Diffus., 2010, 31, p 28-33CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • J. Wang
    • 1
  • C. Leinenbach
    • 1
  • L. B. Liu
    • 2
  • H. S. Liu
    • 2
  • Z. P. Jin
    • 2
  1. 1.EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface TechnologyDübendorfSwitzerland
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations