First-Principles Calculations and CALPHAD Modeling of Thermodynamics

  • Zi-Kui LiuEmail author
Basic and Applied Research


Thermodynamics is the key component of materials science and engineering. The manifestation of thermodynamics is typically represented by phase diagrams, traditionally for binary and ternary systems. Consequently, the applications of thermodynamics have been rather limited in multicomponent engineering materials. Computational thermodynamics, based on the CALPHAD approach developed in the last few decades, has released the power of thermodynamics and enabled scientists and engineers to make phase stability calculations routinely for technologically important engineering materials. Within the similar time frame, first-principles quantum mechanics technique based on density functional theory has progressed significantly and demonstrated in many cases the accuracy of predicted thermodynamic properties comparable with experimental uncertainties. In this paper, the basics of the CALPHAD modeling and first-principles calculations are presented emphasizing current multiscale and multicomponent capability. Our research results on integrating first-principles calculations and the CALPHAD modeling are discussed with examples on enthalpy of formation at 0 K, thermodynamics at finite temperatures, enthalpy of mixing in binary and ternary substitutional solutions, defect structure and lattice preference, and structure of liquid, super-cooled liquid, and glass.


ab initio methods CALPHAD CALPHAD approach computational studies first principles thermodynamics 



The author greatly appreciates the support from National Science Foundation under grants 9983532 (CAREER), 0073836, 0205232, 0209624, 0510180, 0514592, and 0541674, Department of Energy through the grant DE-ED1803000, the United States Automotive Materials Partnership (USAMP) of Department of Energy through cooperative agreement No. DE-FC05-02OR22910, Office of Naval Research for the grant N0014-07-1-0638, and US Army Research Laboratory for the grant W911NF-08-2-0064. The author would also like to thank the students and research fellows at the Phases Research Lab at Penn State for their diligent work, particularly those whose publications are cited in the paper, i.e., Raymundo Arroyave, Carl Brubaker, Swetha Ganeshan, William Golumbfskie, Takayuki Honda, Chao Jiang, Manjeera Mantina, Koray Ozturk, Sara Prins, James Saal, Shun Li Shang, Dongwon Shin, Tao Wang, Yi Wang, Mei Yang, Hui Zhang, Shengjun Zhang, Yu Zhong, and Shihuai Zhou. It should be mentioned that Prof. Jorge Sofo, Dr. Yi Wang, Dr. Shun Li Shang, and Dr. Raymundo Arroyave have been instrumental in developing our expertise in first-principles calculations. The author is grateful for opportunities to collaborate with many colleagues at the Pennsylvania State University and other universities in the US and China as evidenced in the references cited. Particularly, the long-term collaborations with Prof. Long-Qing Chen at the Pennsylvania State University, Prof. Chris Wolverton at Northwestern University, Dr. Alan Luo from General Motor Company, and Prof. Xidong Hui from University of Science and Technology Beijing (USTB) have been very enjoyable and fruitful. The author thanks Ms. Chelsey Zacherl for her careful reading of the manuscript.


  1. 1.
    Z.K. Liu, L.Q. Chen, R. Raghavan, Q. Du, J.O. Sofo, S.A. Langer, and C. Wolverton, An Integrated Framework for Multi-Scale Materials Simulation and Design, J. Comput-Aided Mater. Des., 2004, 11, p 183-199ADSCrossRefGoogle Scholar
  2. 2.
    Z.K. Liu and L.-Q. Chen, Integration of First-Principles Calculations, Calphad Modeling, and Phase-Field Simulations, Applied Computational Materials Modeling: Theory, Experiment and Simulations, G. Bozzolo, Ed., Springer, Berlin, 2006, Google Scholar
  3. 3.
    Z.K. Liu and D.L. McDowell, Center for Computational Materials Design (CCMD) and Its Education Vision, Fundamentals and Characterization, Vol 1: Materials Science and Technology (MS&T) 2006, B. Fahrenholtz, A. Kimel, and P.E. Cantonwine, Ed., Cincinnati, OH, 2006, p 111-118Google Scholar
  4. 4.
    Z.K. Liu, The Minerals, Metals & Materials Society, Integrating Forward Simulation and Inverse Design of Materials,, 2009
  5. 5.
    L. Kaufman, Computational Thermodynamics and Materials Design, CALPHAD, 2001, 25, p 141-161CrossRefGoogle Scholar
  6. 6.
    P.J. Spencer, A brief history of CALPHAD, CALPHAD, 2008, 32, p 1-8CrossRefGoogle Scholar
  7. 7.
    L. Kaufman, The Lattice Stability of Metals.1. Titanium and Zirconium, Acta Metall., 1959, 7, p 575-587CrossRefGoogle Scholar
  8. 8.
    L. Kaufman, The Lattice Stability of the Transition Metal, Phase Stability in Metals and Alloys, P.S. Rudman, J.S. Stringer, and R.I. Jaffee, Ed., McGraw-Hill, New York, 1967, p 125-150 Google Scholar
  9. 9.
    L. Kaufman, Stability of Metallic Phases, Prog. Mater. Sci., 1969, 14, p 55MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagram, Academic Press Inc., New York, 1970Google Scholar
  11. 11.
    J. Agren, Numerical Treatment of Diffusional Reactions in Multicomponent Alloys, J. Phys. Chem. Solids, 1982, 43, p 385-391ADSCrossRefGoogle Scholar
  12. 12.
    J.O. Andersson and J. Agren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72, p 1350-1355ADSCrossRefGoogle Scholar
  13. 13.
    X.G. Lu, M. Selleby, and B. Sundman, Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc, CALPHAD, 2005, 29, p 49-55CrossRefGoogle Scholar
  14. 14.
    B. Hallstedt, N. Dupin, M. Hillert, L. Hoglund, H.L. Lukas, J.C. Schuster, and N. Solak, Thermodynamic Models for Crystalline Phases. Composition Dependent Models for Volume, Bulk Modulus and Thermal Expansion, CALPHAD, 2007, 31, p 28-37CrossRefGoogle Scholar
  15. 15.
    W. Hume-Rothery, Factors Affecting the Stability of Metallic Phases, Phase Stability in Metals and Alloys, P.S. Rudman, J.S. Stringer, and R.I. Jaffee, Ed., McGraw-Hill, New York, 1967, p 3-23 Google Scholar
  16. 16.
    L. Brewer, Viewpoints of Stability of Metallic Structures, Phase Stability in Metals and Alloys, P.S. Rudman, J.S. Stringer, and R.I. Jaffee, Ed., McGraw-Hill, New York, 1967, p 39-62 Google Scholar
  17. 17.
    D.G. Pettifor, Physicists View of Energetics of Transition-Metals, CALPHAD, 1977, 1, p 305-324CrossRefGoogle Scholar
  18. 18.
    J. Hafner and F. Sommer, Ab Initio Pseudopotential Calculations of Structure and Stability of Binary-Alloys and Intermetallic Compounds, CALPHAD, 1977, 1, p 325-340CrossRefGoogle Scholar
  19. 19.
    A.R. Miedema, F.R. Deboer, and R. Boom, Model Predictions for Enthalpy of Formation of Transition-Metal Alloys, CALPHAD, 1977, 1, p 341-359CrossRefGoogle Scholar
  20. 20.
    E.S. Machlin, Modified Pair Potentials and Alloy Phase-Stability, CALPHAD, 1977, 1, p 361-377CrossRefGoogle Scholar
  21. 21.
    J.O. Andersson, A.F. Guillermet, P. Gustafson, M. Hillert, B. Jansson, B. Jonsson, B. Sundman, and J. Agren, A New Method of Describing Lattice Stabilities, CALPHAD, 1987, 11, p 93-98CrossRefGoogle Scholar
  22. 22.
    N. Saunders, A.P. Miodownik, and A.T. Dinsdale, Metastable Lattice Stabilities for the Elements, CALPHAD, 1988, 12, p 351-374CrossRefGoogle Scholar
  23. 23.
    Y.A. Chang, C. Colinet, M. Hillert, Z. Moser, J.M. Sanchez, N. Saunders, R.E. Watson, and A. Kussmaul, GROUP 3: Estimation of Enthalpies for Stable and Metastable States, CALPHAD, 1995, 19, p 481-498CrossRefGoogle Scholar
  24. 24.
    B.P. Burton, N. Dupin, S.G. Fries, G. Grimvall, A.F. Guillermet, P. Miodownik, W.A. Oates, and V. Vinograd, Using Ab Initio Calculations in the CALPHAD Environment, Z. Metallk., 2001, 92, p 514-525Google Scholar
  25. 25.
    P.E.A. Turchi, I.A. Abrikosov, B. Burton, S.G. Fries, G. Grimvalle, L. Kaufman, P. Korzhavyi, V.R. Manga, M. Ohno, A. Pisch, A. Scott, and W.Q. Zhang, Interface Between Quantum-Mechanical-Based Approaches, Experiments, and CALPHAD Methodology, CALPHAD, 2007, 31, p 4-27CrossRefGoogle Scholar
  26. 26.
    H.L. Skriver, Crystal-Structure from One-Electron Theory, Phys. Rev. B, 1985, 31, p 1909-1923ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, Ab Initio Lattice Stability in Comparison with CALPHAD Lattice Stability, CALPHAD, 2004, 28, p 79-90CrossRefGoogle Scholar
  28. 28.
    S. Curtarolo, D. Morgan, and G. Ceder, Accuracy of Ab Initio Methods in Predicting the Crystal Structures of Metals: A Review of 80 Binary Alloys, CALPHAD, 2005, 29, p 163-211CrossRefGoogle Scholar
  29. 29.
    L. Kaufman, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry—Foreword, CALPHAD, 2002, 26, p 141CrossRefGoogle Scholar
  30. 30.
    G. Grimvall, Reconciling Ab Initio and Semiempirical Approaches to Lattice Stabilities, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1998, 102, p 1083-1087Google Scholar
  31. 31.
    A.E. Kissavos, S. Shallcross, V. Meded, L. Kaufman, and I.A. Abrikosov, A Critical Test of Ab Initio and CALPHAD Methods: The Structural Energy Difference Between bcc and hcp Molybdenum, CALPHAD, 2005, 29, p 17-23CrossRefGoogle Scholar
  32. 32.
    C. Asker, A.B. Belonoshko, A.S. Mikhaylushkin, and I.A. Abrikosov, First-Principles Solution to the Problem of Mo Lattice Stability, Phys. Rev. B, 2008, 77, p 220102ADSCrossRefGoogle Scholar
  33. 33.
    G. Grimvall, Extrapolative Procedures in Modelling and Simulations: The Role of Instabilities, Sci. Model. Simul., 2008, 15, p 5-20CrossRefGoogle Scholar
  34. 34.
    V. Ozolins, First-Principles Calculations of Free Energies of Unstable Phases: The Case of fcc W, Phys. Rev. Lett., 2009, 102, p 065702ADSCrossRefGoogle Scholar
  35. 35.
    S.G. Fries and B. Sundman, Using Re-W Sigma-Phase First-Principles Results in the Bragg-Williams Approximation to Calculate Finite-Temperature Thermodynamic Properties, Phys. Rev. B, 2002, 66, p 012203ADSCrossRefGoogle Scholar
  36. 36.
    Y. Zhong, A.A. Luo, J.O. Sofo, and Z.K. Liu, First-Principles Investigation of Laves Phases in Mg-Al-Ca System, Mater. Sci. Forum, 2005, 488-489, p 169-175CrossRefGoogle Scholar
  37. 37.
    M.C. Gao, A.D. Rollett, and M. Widom, First-Principles Calculation of Lattice Stability of C15-M2R and Their Hypothetical C15 Variants (M = Al, Co, Ni; R = Ca, Ce, Nd, Y), CALPHAD, 2006, 30, p 341-348CrossRefGoogle Scholar
  38. 38.
    M.H.F. Sluiter, Ab Initio Lattice Stabilities of Some Elemental Complex Structures, CALPHAD, 2006, 30, p 357-366CrossRefGoogle Scholar
  39. 39.
    M. Šob, A. Kroupa, J. Pavlu, and J. Vreštál, Application of Ab Initio Electronic Structure Calculations in Construction of Phase Diagrams of Metallic Systems with Complex Phases, Solid State Phenom, 2009, 150, p 1-29CrossRefGoogle Scholar
  40. 40.
    N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford, New York, 1998Google Scholar
  41. 41.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, New York, 2007zbMATHGoogle Scholar
  42. 42.
    M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations, 2nd ed., Cambridge University Press, Cambridge, 2007Google Scholar
  43. 43.
    M. Hillert and L.I. Stafansson, Regular Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24, p 3618CrossRefGoogle Scholar
  44. 44.
    M. Hillert, The compound energy formalism, J. Alloy. Compd., 2001, 320, p 161-176CrossRefGoogle Scholar
  45. 45.
    A.D. Pelton and M. Blander, Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasi-Chemical Approach—Application to Silicate Slags, Metall. Mater. Trans. B, 1986, 17, p 805-815ADSGoogle Scholar
  46. 46.
    A.D. Pelton, M. Blander, M.T. ClavagueraMora, M. Hoch, L. Hoglund, H.L. Lukas, P. Spencer, and B. Sundman, Thermodynamic Modeling of Solutions and Alloys—Schloss Ringberg, March 10-16, 1996—Group 1: Liquids, CALPHAD, 1997, 21, p 155-170CrossRefGoogle Scholar
  47. 47.
    A.D. Pelton and P. Chartrand, The Modified Quasi-Chemical Model: Part II. Multicomponent Solutions, Metall. Mater. Trans. A, 2001, 32, p 1355-1360CrossRefGoogle Scholar
  48. 48.
    W.A. Oates, F. Zhang, S.L. Chen, and Y.A. Chang, Improved Cluster-Site Approximation for the Entropy of Mixing in Multicomponent Solid Solutions, Phys. Rev. B, 1999, 59, p 11221-11225ADSCrossRefGoogle Scholar
  49. 49.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425CrossRefGoogle Scholar
  50. 50.
    O. Redlich and A.T. Kister, Algebraic Representations of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348CrossRefGoogle Scholar
  51. 51.
    B. Sundman, S.G. Fries, and W.A. Oates, A Thermodynamic Assessment of the Au-Cu System, CALPHAD, 1998, 22, p 335-354CrossRefGoogle Scholar
  52. 52.
    T. Abe and B. Sundman, A Description of the Effect of Short Range Ordering in the Compound Energy Formalism, CALPHAD, 2003, 27, p 403-408CrossRefGoogle Scholar
  53. 53.
    T. Honda and Z. K. Liu, Unpublished, 2007Google Scholar
  54. 54.
    I. Ansara, T.G. Chart, A.F. Guillermet, F.H. Hayes, U.R. Kattner, D.G. Pettifor, N. Saunders, and K. Zeng, Thermodynamic Modelling of Solutions and Alloys—Schloss Ringberg, March 10 to March 16, 1996—Group 2: Alloy System I—Thermodynamic Modelling of Selected Topologically Close-Packed Intermetallic Compounds, CALPHAD, 1997, 21, p 171-218CrossRefGoogle Scholar
  55. 55.
    N. Dupin, I. Ansara, and B. Sundman, Thermodynamic Re-assessment of the Ternary System Al-Cr-Ni, CALPHAD, 2001, 25, p 279-298CrossRefGoogle Scholar
  56. 56.
    M. Hillert and M. Jarl, A Model for Alloying Effects in Ferromagnetic Metals, CALPHAD, 1978, 2, p 227-238CrossRefGoogle Scholar
  57. 57.
    W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p 1133-1138MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Y. Wang, Z.K. Liu, and L.Q. Chen, Thermodynamic Properties of Al, Ni, NiAl, and Ni3Al from First-Principles Calculations, Acta Mater., 2004, 52, p 2665-2671MathSciNetCrossRefGoogle Scholar
  59. 59.
    S.L. Shang, Y. Wang, D.E. Kim, and Z.K. Liu, First-Principles Thermodynamics from Phonon and Debye Model: Application to Ni and Ni3Al, Comput. Mater. Sci., Submitted, 2009Google Scholar
  60. 60.
    M. Born and R. Oppenheimer, Quantum Theory of Molecules, Ann. Phys.-Berlin, 1927, 84, p 0457-0484ADSCrossRefGoogle Scholar
  61. 61.
    P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B, 1964, 136, p B864MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, 45, p 566-569ADSCrossRefGoogle Scholar
  63. 63.
    J.P. Perdew and A. Zunger, Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems, Phys. Rev. B, 1981, 23, p 5048-5079ADSCrossRefGoogle Scholar
  64. 64.
    J.P. Perdew, K. Burke, and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B, 1996, 54, p 16533-16539ADSCrossRefGoogle Scholar
  65. 65.
    J.P. Perdew, K. Burke, and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System (vol 54, pg 16 533, 1996), Phys. Rev. B, 1998, 57, p 14999ADSCrossRefGoogle Scholar
  66. 66.
    J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy, Phys. Rev. B, 1992, 45, p 13244-13249ADSCrossRefGoogle Scholar
  67. 67.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868ADSCrossRefGoogle Scholar
  68. 68.
    G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rew. B, 1999, 59, p 1758-1775ADSCrossRefGoogle Scholar
  69. 69.
    A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard, Special Quasirandom Structures, Phys. Rev. Lett., 1990, 65, p 353-356ADSCrossRefGoogle Scholar
  70. 70.
    S.H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger, Electronic Properties of Random Alloys: Special Quasirandom Structures, Phys. Rev. B, 1990, 42, p 9622-9649ADSCrossRefGoogle Scholar
  71. 71.
    A. Filippetti and N.A. Spaldin, Self-Interaction-Corrected Pseudopotential Scheme for Magnetic and Strongly-Correlated Systems, Phys. Rev. B, 2003, 67, p 125109ADSCrossRefGoogle Scholar
  72. 72.
    V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: The LDA+U Method, J. Phys.-Condes. Matter, 1997, 9, p 767-808ADSCrossRefGoogle Scholar
  73. 73.
    A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Dynamical Mean-Field Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimensions, Rev. Mod. Phys., 1996, 68, p 13-125MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    J. Hafner, Ab Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond, J. Comput. Chem., 2008, 29, p 2044-2078CrossRefGoogle Scholar
  75. 75.
    A.J. Cohen, P. Mori-Sanchez, and W.T. Yang, Insights into Current Limitations of Density Functional Theory, Science, 2008, 321, p 792-794ADSCrossRefGoogle Scholar
  76. 76.
    J.M. Sanchez, Cluster Expansion and the Configurational Energy of Alloys, Phys. Rew. B, 1993, 48, p R14013-R14015ADSCrossRefGoogle Scholar
  77. 77.
    A. van de Walle and M. Asta, Self-Driven Lattice-Model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams, Model. Simulat. Mater. Sci. Eng., 2002, 10, p 521-538ADSCrossRefGoogle Scholar
  78. 78.
    V. Ozolins, C. Wolverton, and A. Zunger, Cu-Au, Ag-Au, Cu-Ag, and Ni-Au Intermetallics: First-Principles Study of Temperature-Composition Phase Diagrams and Structures, Phys. Rev. B, 1998, 57, p 6427-6443ADSCrossRefGoogle Scholar
  79. 79.
    V.L. Moruzzi, J.F. Janak, and K. Schwarz, Calculated Thermal-Properties of Metals, Phys. Rev. B, 1988, 37, p 790-799ADSCrossRefGoogle Scholar
  80. 80.
    A. van de Walle and G. Ceder, The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics, Rev. Mod. Phys., 2002, 74, p 11-45ADSCrossRefGoogle Scholar
  81. 81.
    X. Gonze, First-Principles Responses of Solids to Atomic Displacements and Homogeneous Electric Fields: Implementation of a Conjugate-Gradient Algorithm, Phys. Rev. B, 1997, 55, p 10337-10354ADSCrossRefGoogle Scholar
  82. 82.
    Y. Wang, D.Q. Chen, and X.W. Zhang, Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa, Phys. Rev. Lett, 2000, 84, p 3220-3223ADSCrossRefGoogle Scholar
  83. 83.
    F. Kormann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, and J. Neugebauer, Free Energy of bcc Iron: Integrated Ab Initio Derivation of Vibrational, Electronic, and Magnetic Contributions, Phys. Rev. B, 2008, 78, p 033102ADSCrossRefGoogle Scholar
  84. 84.
    Y. Wang, L.G. Hector, H. Zhang, S.L. Shang, L.Q. Chen, and Z.K. Liu, Thermodynamics of the Ce Gamma-Alpha Transition: Density-Functional Study, Phys. Rev. B, 2008, 78, p 104113ADSCrossRefGoogle Scholar
  85. 85.
    Y. Wang, L.G. Hector, Jr., H. Zhang, S.L. Shang, L.Q. Chen, and Z.K. Liu, Thermodynamic Framework for a System with Itinerant-Electron Magnetism, J. Phys.: Condens. Matter, 2009, 21, p 326003CrossRefGoogle Scholar
  86. 86.
    J. Iniguez and D. Vanderbilt, First-Principles Study of the Temperature-Pressure Phase Diagram of BaTiO3, Phys. Rev. Lett., 2002, 89, p 115503ADSCrossRefGoogle Scholar
  87. 87.
    W. Zhong, D. Vanderbilt, and K.M. Rabe, First-Principles Theory of Ferroelectric Phase-Transitions for Perovskites—The Case of BaTiO3, Phys. Rev. B, 1995, 52, p 6301-6312ADSCrossRefGoogle Scholar
  88. 88.
    R. Car and M. Parrinello, Unified Approach for Molecular-Dynamics and Density-Functional Theory, Phys. Rev. Lett., 1985, 55, p 2471-2474ADSCrossRefGoogle Scholar
  89. 89.
    G. Kresse and J. Hafner, Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium, Phys. Rev. B, 1994, 49, p 14251-14269ADSCrossRefGoogle Scholar
  90. 90.
    S. Nose, A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods, J. Chem. Phys., 1984, 81, p 511-519ADSCrossRefGoogle Scholar
  91. 91.
    S. Nose, A Molecular-Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys., 1984, 52, p 255-268ADSCrossRefGoogle Scholar
  92. 92.
    R. Iftimie, P. Minary, and M.E. Tuckerman, Ab initio molecular dynamics: Concepts, recent developments, and future trends, Proc. Natl. Acad. Sci. USA, 2005, 102, p 6654-6659ADSCrossRefGoogle Scholar
  93. 93.
    R. Gao, X. Hui, H.Z. Fang, X.J. Liu, G.L. Chen, and Z.K. Liu, Structural Characterization of Mg65Cu25Y10 Metallic Glass from Ab Initio Molecular Dynamics, Comput. Mater. Sci., 2008, 44, p 802-806CrossRefGoogle Scholar
  94. 94.
    X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, J.Y. Qin, and Z.K. Liu, Atomic Structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Alloy, Acta Mater., 2009, 57, p 376-391CrossRefGoogle Scholar
  95. 95.
    A.B. Belonoshko, L. Burakovsky, S.P. Chen, B. Johansson, A.S. Mikhaylushkin, D.L. Preston, S.I. Simak, and D.C. Swift, Molybdenum at High Pressure and Temperature: Melting from Another Solid Phase, Phys. Rev. Lett., 2008, 100, p 135701ADSCrossRefGoogle Scholar
  96. 96.
    Y. Wang, Z.K. Liu, L.Q. Chen, and C. Wolverton, First-Principles Calculations of Beta—Mg5Si6/Alpha-Al Interfaces, Acta Mater., 2007, 55, p 5934-5947CrossRefGoogle Scholar
  97. 97.
    S.L. Shang, Y. Wang, and Z.K. Liu, First-Principles Elastic Constants of Alpha- and Theta-Al2O3, Appl. Phys. Lett., 2007, 90, p 101909ADSCrossRefGoogle Scholar
  98. 98.
    S. Ganeshan, S.L. Shang, H. Zhang, Y. Wang, M. Mantina, and Z.K. Liu, Elastic Constants of Binary Mg Compounds from First-Principles Calculations, Intermetallics, 2009, 17, p 313-318CrossRefGoogle Scholar
  99. 99.
    M. Mantina, Y. Wang, R. Arroyave, L.Q. Chen, Z.K. Liu, and C. Wolverton, First-Principles Calculation of Self-Diffusion Coefficients, Phys. Rev. Lett., 2008, 100, p 215901ADSCrossRefGoogle Scholar
  100. 100.
    Y. Zhong, C. Wolverton, Y.A. Chang, and Z.K. Liu, A Combined CALPHAD/First-Principles Remodeling of the Thermodynamics of Al-Sr: Unsuspected Ground State Energies by “Rounding up the (Un)usual Suspects, Acta Mater., 2004, 52, p 2739-2754CrossRefGoogle Scholar
  101. 101.
    K. Ozturk, Y. Zhong, L.Q. Chen, C. Wolverton, J.O. Sofo, and Z.K. Liu, Linking First-Principles Energetics to CALPHAD: An Application to Thermodynamic Modeling of the Al-Ca Binary System, Metall. Mater. Trans. A, 2005, 36A, p 5-13CrossRefGoogle Scholar
  102. 102.
    S.H. Zhou, Y. Wang, C. Jiang, J.Z. Zhu, L.Q. Chen, and Z.K. Liu, First-Principles Calculations and Thermodynamic Modeling of the Ni-Mo System, Mater. Sci. Eng. A, 2005, 397, p 288-296CrossRefGoogle Scholar
  103. 103.
    Y. Zhong, M. Yang, and Z.K. Liu, Contribution of First-Principles Energetics to Al-Mg Thermodynamic Modeling, CALPHAD, 2005, 29, p 303-311CrossRefGoogle Scholar
  104. 104.
    W. Golumbfskie and Z.K. Liu, CALPHAD/First-Principles Re-modeling of the Co-Y Binary System, J. Alloy. Compd., 2006, 407, p 193-200CrossRefGoogle Scholar
  105. 105.
    R. Arroyave and Z.K. Liu, Thermodynamic Modelling of the Zn-Zr System, CALPHAD, 2006, 30, p 1-13CrossRefGoogle Scholar
  106. 106.
    Y. Zhong, J. Liu, R.A. Witt, Y.H. Sohn, and Z.K. Liu, Al-2(Mg, Ca) Phases in Mg-Al-Ca Ternary System: First-Principles Prediction and Experimental Identification, Scr. Mater., 2006, 55, p 573-576CrossRefGoogle Scholar
  107. 107.
    Y. Zhong, K. Ozturk, J.O. Sofo, and Z.K. Liu, Contribution of First-Principles Energetics to the Ca-Mg Thermodynamic Modeling, J. Alloy. Compd., 2006, 420, p 98-106CrossRefGoogle Scholar
  108. 108.
    Y. Zhong, J.O. Sofo, A.A. Luo, and Z.K. Liu, Thermodynamics Modeling of the Mg-Sr and Ca-Mg-Sr Systems, J. Alloy. Compd., 2006, 421, p 172-178CrossRefGoogle Scholar
  109. 109.
    D. Shin, R. Arroyave, and Z.K. Liu, Thermodynamic Modeling of the Hf-Si-O System, CALPHAD, 2006, 30, p 375-386CrossRefGoogle Scholar
  110. 110.
    J.E. Saal, D. Shin, A.J. Stevenson, G.L. Messing, and Z.K. Liu, First-Principles Calculations and Thermodynamic Modeling of the Al2O3-Nd2O3 System, J. Am. Ceram. Soc., 2008, 91, p 3355-3361CrossRefGoogle Scholar
  111. 111.
    D. Shin, J.E. Saal, and Z.K. Liu, Thermodynamic Modeling of the Cu-Si System, CALPHAD, 2008, 32, p 520-526CrossRefGoogle Scholar
  112. 112.
    J.E. Saal, S. Shang, and Z.K. Liu, The Structural Evolution of Boron Carbide via Ab Initio Calculations, Appl. Phys. Lett., 2007, 91, p 231915ADSCrossRefGoogle Scholar
  113. 113.
    R. Arroyave, D. Shin, and Z.K. Liu, Ab Initio Thermodynamic Properties of Stoichiometric Phases in the Ni-Al System, Acta Mater., 2005, 53, p 1809-1819CrossRefGoogle Scholar
  114. 114.
    R. Arroyave, A. van de Walle, and Z.-K. Liu, First-Principles Calculations of the Zn-Zr System, Acta Mater., 2006, 54, p 473-482CrossRefGoogle Scholar
  115. 115.
    S.L. Shang, Y. Wang, H. Zhang, and Z.K. Liu, Lattice Dynamics and Anomalous Bonding in Rhombohedral As: First-Principles Supercell Method, Phys. Rev. B, 2007, 76, p 052301ADSCrossRefGoogle Scholar
  116. 116.
    S.L. Shang, Y. Wang, R. Arroyave, and Z.K. Liu, Phase Stability in Alpha- and Beta-Rhombohedral Boron, Phys. Rev. B, 2007, 75, p 092101ADSCrossRefGoogle Scholar
  117. 117.
    S.L. Shang, Y. Wang, and Z.K. Liu, First-Principles Calculations of Phonon and Thermodynamic Properties in the Boron-Alkaline Earth Metal Binary Systems: B-Ca, B-Sr, and B-Ba, Phys. Rev. B, 2007, 75, p 024302ADSCrossRefGoogle Scholar
  118. 118.
    W.J. Golumbfskie, R. Arroyave, D. Shin, and Z.K. Liu, Finite-Temperature Thermodynamic and Vibrational Properties of Al-Ni-Y Compounds Via First-Principles Calculations, Acta Mater., 2006, 54, p 2291-2304CrossRefGoogle Scholar
  119. 119.
    R. Arroyave and Z.K. Liu, Intermetallics in the Mg-Ca-Sn Ternary System: Structural, Vibrational, and Thermodynamic Properties from First Principles, Phys. Rev. B, 2006, 74, p 174118ADSCrossRefGoogle Scholar
  120. 120.
    A. Ohno, A. Kozlov, R. Arroyave, Z.K. Liu, and R. Schmid-Fetzer, Thermodynamic Modeling of the Ca-Sn System Based on Finite Temperature Quantities from First-Principles and Experiment, Acta Mater., 2006, 54, p 4939-4951CrossRefGoogle Scholar
  121. 121.
    A. Kozov, M. Ohno, R. Arroyave, Z.K. Liu, and R. Schmid-Fetzer, Phase Equilibria, Thermodynamics and Solidification Microstructures of Mg-Sn-Ca Alloys, Part 1: Experimental Investigation and Thermodynamic Modeling of the Ternary Mg-Sn-Ca System, Intermetallics, 2008, 16, p 299-315Google Scholar
  122. 122.
    W.J. Golumbfskie, S.N. Prins, T.J. Eden, and Z.K. Liu, Predictions of the Al-rich region of the Al-Co-Ni-Y System Based Upon First-Principles and Experimental Data, CALPHAD, 2009, 33, p 124-135CrossRefGoogle Scholar
  123. 123.
    M. Hillert, A Solid-Solution Model for Inhomogeneous Systems, Acta Metall., 1961, 9, p 525-553CrossRefGoogle Scholar
  124. 124.
    J.W. Cahn, Spinodal Decomposition in Cubic Crystals, Acta Metall., 1962, 10, p 179CrossRefGoogle Scholar
  125. 125.
    T. Nishizawa, The 37th Honda Memorial Lecture—Progress of Calphad, Mater. Trans. JIM, 1992, 33, p 713-722Google Scholar
  126. 126.
    T. Nishizawa, Effect of Magnetic Transition on Phase Equilibria in Iron Alloys, J. Phase Equilib., 1995, 16, p 379-389CrossRefGoogle Scholar
  127. 127.
    C. Jiang, C. Wolverton, J. Sofo, L.Q. Chen, and Z.K. Liu, First-Principles Study of Binary bcc Alloys Using Special Quasirandom Structures, Phys. Rev. B, 2004, 69, p 214202ADSCrossRefGoogle Scholar
  128. 128.
    D. Shin, R. Arroyave, Z.K. Liu, and A. Van de Walle, Thermodynamic Properties of Binary hcp Solution Phases from Special Quasirandom Structures, Phys. Rev. B, 2006, 74, p 024204ADSCrossRefGoogle Scholar
  129. 129.
    D. Shin, A. van de Walle, Y. Wang, and Z.K. Liu, First-Principles Study of Ternary fcc Solution Phases from Special Quasirandom Structures, Phys. Rev. B, 2007, 76, p 144204ADSCrossRefGoogle Scholar
  130. 130.
    D. Shin, Z.K. Liu, and C. Wolverton, Unpublished, 2009Google Scholar
  131. 131.
    C. Jiang, L.Q. Chen, and Z.K. Liu, First-Principles Study of Constitutional Point Defects in B2NiAl Using Special Quasirandom Structures, Acta Mater., 2005, 53, p 2643-2652CrossRefGoogle Scholar
  132. 132.
    T. Wang, “An Integrated Approach for Microstructure Simulation: Application to Ni-Al-Mo Alloys,” PhD Thesis, The Pennsylvania State University, 2006Google Scholar
  133. 133.
    S.J. Zhang, C. Brubaker, C. Jiang, M. Yang, Y. Zhong, Q.Y. Han, and Z.K. Liu, A Combined First-Principles Calculation and Thermodynamic Modeling of the F-K-Na System, Mater. Sci. Eng. A, 2006, 418, p 161-171CrossRefGoogle Scholar
  134. 134.
    A. van de Walle, M. Asta, and G. Ceder, The Alloy Theoretic Automated Toolkit: A User Guide, CALPHAD, 2002, 26, p 539-553CrossRefGoogle Scholar
  135. 135.
    D.W. Shin and Z.K. Liu, Enthalpy of Mixing for Ternary fcc Solid Solutions from Special Quasirandorn Structures, CALPHAD, 2008, 32, p 74-81CrossRefGoogle Scholar
  136. 136.
    I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., COST 507: Thermochemical Database for Light Metal Alloys, Vol 2, European Commission, 1998Google Scholar
  137. 137.
    R. Arroyave, D. Shin, and Z.K. Liu, Modification of the Thermodynamic Model for the Mg-Zr System, CALPHAD, 2005, 29, p 230-238CrossRefGoogle Scholar
  138. 138.
    S.L. Shang, Z.J. Liu, and Z.K. Liu, Thermodynamic Modeling of the Ba-Ni-Ti System, J. Alloy. Compd., 2007, 430, p 188-193CrossRefGoogle Scholar
  139. 139.
    H. Zhang, Y. Wang, S.L. Shang, L.Q. Chen, and Z.K. Liu, Thermodynamic Modeling of Mg-Ca-Ce System by Combining First-Principles and CALPHAD Method, J. Alloy. Compd., 2008, 463, p 294-301CrossRefGoogle Scholar
  140. 140.
    M. Mantina, “A First-Principles Methodology for Diffusion Coefficients in Metals and Dilute Alloys,” Thesis, The Pennsylvania State University, 2008Google Scholar
  141. 141.
    C. Jiang, L.Q. Chen, and Z.K. Liu, First-Principles Study of Constitutional and Thermal Point Defects in B2PdIn, Intermetallics, 2006, 14, p 248-254CrossRefGoogle Scholar
  142. 142.
    P.A. Korzhavyi, A.V. Ruban, A.Y. Lozovoi, Y.K. Vekilov, I.A. Abrikosov, and B. Johansson, Constitutional and Thermal Point Defects in B2 NiAl, Phys. Rev. B, 2000, 61, p 6003-6018ADSCrossRefGoogle Scholar
  143. 143.
    S. Prins, R. Arroyave, and Z.K. Liu, Defect Structures and Ternary Lattice Site Preference of the B2 Phase in the Al-Ni-Ru System, Acta Mater., 2007, 55, p 4781-4787CrossRefGoogle Scholar
  144. 144.
    H.Z. Fang, X. Hui, G.L. Chen, and Z.K. Liu, Structural Evolution of Cu During Rapid Quenching by Ab Initio Molecular Dynamics, Phys. Lett. A, 2008, 372, p 5831-5837ADSCrossRefGoogle Scholar
  145. 145.
    H.Z. Fang, X. Hui, G.L. Chen, R. Ottking, Y.H. Liu, J.A. Schaefer, and Z.K. Liu, Ab Initio Molecular Dynamics Simulation for Structural Transition of Zr During Rapid Quenching Processes, Comput. Mater. Sci., 2008, 43, p 1123-1129CrossRefGoogle Scholar
  146. 146.
    T. Lida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon, Oxford, 1988Google Scholar
  147. 147.
    H.Z. Fang, X. Hui, G.L. Chen, and Z.K. Liu, Al-Centered Icosahedral Ordering in Cu46Zr46Al8 Bulk Metallic Glass, Appl. Phys. Lett., 2009, 94, p 091904ADSCrossRefGoogle Scholar
  148. 148.
    X. Hui, R. Gao, G.L. Chen, S.L. Shang, Y. Wang, and Z.K. Liu, Short-to-Medium-Range Order in Mg65Cu25Y10 Metallic Glass, Phys. Lett. A, 2008, 372, p 3078-3084ADSCrossRefGoogle Scholar
  149. 149.
    X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, and Z.K. Liu, Icosahedral Ordering in Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass, Appl. Phys. Lett., 2008, 92, p 201913ADSCrossRefGoogle Scholar
  150. 150.
    X. Hui, X.J. Liu, R. Gao, H.Y. Hou, H.Z. Fang, Z.K. Liu, and G.L. Chen, Atomic Structures of Zr-Based Metallic Glasses, Sci. China Ser. G-Phys. Mech. Astron., 2008, 51, p 400-413ADSCrossRefGoogle Scholar
  151. 151.
    Y. Wang and Z. K. Liu, Unpublished, 2009Google Scholar
  152. 152.
    Z.K. Liu, Thermodynamic Calculations and Phase Diagrams for Magnesium and its Alloys: Part II, JOM, 2009, 61(5), p 67ADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations