Journal of Phase Equilibria and Diffusion

, Volume 29, Issue 3, pp 222–230

Gibbs Energy of Formation of MnO: Measurement and Assessment

Basic and Applied Research.


Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of ±5 kJ mol−1 for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1 − δO as the reference electrode. The cell can be presented as
$$ {\text{Pt, Mn}} + {\text{MnO}}/{\text{YDT}}/{\text{Fe}} + {\text{Fe}}_{{1 - \updelta }} {\text{O, Pt}} $$
Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from α-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as:
$$ \Updelta G^{{\text{o}}}_{{\text{f}}} {\text{/J}}\,{\text{mol}}^{{ - 1}} (\pm250) = - {\text{385624}} + {\text{73}}{\text{.071}}T $$
From 980 to 1300 K the Gibbs energy of formation of MnO from β-Mn and oxygen gas is given by:
$$ \Updelta G^{{\text{o}}}_{{\text{f}}} {\text{/J}}\,{\text{mol}}^{{ - 1}} (\pm250) = - {\text{387850}} + {\text{75}}{\text{.36}}T $$

The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (±5 kJ mol−1) in Gibbs energies of MnO from their two cells with Fe + Fe1 − δO and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.


assessment electromotive force (EMF) experimental thermodynamics oxide system thermodynamic properties 


  1. 1.
    A.N. Grundy, B. Hallstedt, L.J. Gauckler, Assessment of the Mn-O System, J. Phase Equilibria, 2003, 24, p 21-39CrossRefGoogle Scholar
  2. 2.
    C.B. Alcock, S. Zador, Thermodynamic Study of Manganese/Manganous-Oxide System by the Use of Solid Oxide Electrolytes, Electrochim. Acta, 1967, 12, p 673-677CrossRefGoogle Scholar
  3. 3.
    K.T. Jacob, Potentiometric Determination of the Gibbs Free Energy of Formation of Cadmium and Magnesium Chromites, J. Electrochem. Soc. 1977, 124, p 1827-1831CrossRefGoogle Scholar
  4. 4.
    L.B. Pankratz, Thermodynamic Properties of Elements and Oxides. Bull. U.S. Bur. Mines, 1982, 672, p 229-236Google Scholar
  5. 5.
    J.W. Patterson, Conduction Domains for Solid Electrolytes, J. Electrochem. Soc., 1971, 118, p 1033-1039CrossRefGoogle Scholar
  6. 6.
    B. Sundman, An Assessment of the Fe-O System, J. Phase Equilibria, 1991, 12, p 127-140CrossRefGoogle Scholar
  7. 7.
    M.W. Davies, F.D. Richardson, The Non-Stoichiometry of Manganous Oxide, J. Chem. Soc. Faraday Trans., 1959, 55, p 604-610CrossRefGoogle Scholar
  8. 8.
    P. Kofstad, Defects and Diffusion in MnO, J. Phys. Chem. Solid, 1983, 44, p 879-889CrossRefADSGoogle Scholar
  9. 9.
    B.C.H. Steele, High Temperature Thermodynamic Measurements Involving Solid Electrolyte Systems, Electromotive Force Measurements in High Temperature Systems, C.B. Alcock, Ed., (London), Institution of Mining and Metallurgy, 1968, p 3-27Google Scholar
  10. 10.
    S. Zador, “Thermodynamic Studies of Non-Stoichiometry in Oxides with Rutile Structure,” Ph.D. Thesis, University of London, U.K., 1967Google Scholar
  11. 11.
    H.S. O’Neill, M.I. Pownceby, Thermodynamic Data from the Redox Reactions at High Temperature. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, With Revised Values for the Fe-‘FeO’, Co-CoO, Ni-NiO, Cu-Cu2O Oxygen Buffers and New Data for the W-WO2 Buffer, Contrib. Mineral. Petrol., 1993, 114(3), p 296-314CrossRefADSGoogle Scholar
  12. 12.
    R.W. Millar, The Specific Heats at Low Temperatures of Manganous Oxide, Manganous-Manganic Oxide and Manganese Dioxide, J. Am. Chem. Soc., 1928, 50, p 1875-1883CrossRefGoogle Scholar
  13. 13.
    S.S. Todd, K.R. Bonnickson, Low-Temperature Heat Capacities and Entropies at 298.15 K of Ferrous Oxide, Manganous Oxide and Vanadium Monoxide, J. Am. Chem. Soc., 1951, 73, p 3894-3895CrossRefGoogle Scholar
  14. 14.
    J.L. Shapiro, B.F. Woodfield, R. Stevens, J. Boerio-Goates, M.L. Wilson, Molar Heat Capacity and Thermodynamic Functions of the Type II Antiferromagnet MnO, J. Chem. Thermodyn., 1999, 31, p 725-739CrossRefGoogle Scholar
  15. 15.
    R. Georges, E. Gmelin, D. Landau, J. Lasjaunias, Specific Heat at Low Temperature of Manganese Sulphide and Oxide, C.R. Acad. Sc. Paris, 1969, 269, p 827-830Google Scholar
  16. 16.
    J.C. Southard, C.H. Shomate, Heat of Formation and High-Temperature Heat Content of Manganous Oxide and Manganous Sulphate. High-Temperature Heat Content of Manganese, J. Am. Chem. Soc., 1942, 64, p 1770-1774CrossRefGoogle Scholar
  17. 17.
    P.D. Desai, Thermodynamic Properties of Manganese and Molybdenum, J. Phys. Chem. Ref. Data, 1987, 16, p 91-108ADSGoogle Scholar
  18. 18.
    M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, 3rd ed., Part II, J. Phys. Chem. Ref. Data, 14(Suppl. 1), 1985, p 1667Google Scholar
  19. 19.
    H. Siemonsen, A New Determination of the Heat of Formation of the Oxides of Manganese, Zeit. Elektrochem. Angew. Physikal. Chemie, 1939, 45, p 637-643Google Scholar
  20. 20.
    R.A. Robie, B.S. Hemingway, Low-Temperature Molar Heat Capacity and Entropies of MnO2 (Pyrolusite), Mn3O4 (Hausmanite) and Mn2O3 (bixbyite), J. Am. Chem. Soc., 1985, 17, p 165-181Google Scholar
  21. 21.
    D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, R.H. Schumm, and K.L. Churney, “Selected Values of Chemical Thermodynamic Properties, Tables for Elements 35 Through 53 in the Standard Order of Arrangement,” NBS Tech. Note 270-4, 1969, p 106Google Scholar
  22. 22.
    O. Knacke, O. Kubaschewski, K. Hesselman, Thermodynamic Properties of Inorganic Substances. Springer-Verlag, Berlin, Germany, 1991, p 1182-1185Google Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Institute for Multidisciplinary Research on Advanced MaterialsTohoku University, Aoba-kuSendaiJapan

Personalised recommendations