Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 28, Issue 2, pp 150–157 | Cite as

Thermodynamics of the Au-Si-O System: Application to the Synthesis and Growth of Silicon-Silicon dioxide Nanowires

  • Djamila Bahloul-HourlierEmail author
  • Pierre Perrot
Basic and Applied Research

Abstract

The Solid-Vapor-Liquid-Solid (SVLS) process is a fundamental mechanism for the growth of nanowires. In this article, experimental observations and assessment of thermodynamic data have been used to explain the Solid-Vapor-Liquid-Solid (SVLS) mechanism for the growth of silicon-based nanowires. The binary phase diagram of nanoparticle (Au-Si) systems has been evaluated from information on Gibbs energy of the bulk and surface tension of the liquid phase. At 1100 °C, temperature commonly used for the growth of nanowires by the SVLS mechanism, it has been shown that the nanometric decreases the melting point of pure Au and Si and more generally the liquidus temperatures. Moreover, the liquid phase region in the binary Au-Si phase diagram is enlarged as the particle size becomes smaller. The presence of SiO in the gaseous phase is a necessary but not sufficient condition for the formation of nanowires. The nanowires’growth cannot be explained by the modification of the Au-Si phase diagram with the size of the particles, neither by the presence of SiO, but by the existence of a metastable equilibrium involving the silicon of the wafer, the deposit of vitreous silica and supersaturated SiO in the gaseous phase.

Keywords

binary system Au-Si nanodiagrams nanowhiskers S(V)LS mechanism thermodynamics 

References

  1. 1.
    Rao C.N.R., Deepak F.L., Gundiah G., Govindaraj A. (2003) Inorganic Nanowires. Progress Solid State Chem. 31:5-147CrossRefGoogle Scholar
  2. 2.
    Sunkara M.K., Sharma S., Miranda R., Lian G., Dickey E.C. (2001) Bulk Synthesis of Silicon Nanowires using a Low-temperature Vapor-Liquid-Solid Method. Appl. Phys. Lett 79(10):1546-1548CrossRefADSGoogle Scholar
  3. 3.
    Su J., Cui G., Gherasimova M., Tsukamoto H., Han J., Ciuparu D., Lim S., Pfefferle L., He Y., Nurmikko A.V., Broadbridge C., Lehman A. (2005) Catalytic Growth of Group III-Nitride Nanowires and Nanostructures by Metal-Organic Chemical Vapor Deposition. Appl. Phys. Lett. 86(013105):1546-548Google Scholar
  4. 4.
    Park G.S., Choi W.B., Kim J.M., Choi Y.C., Lee Y.H., Lim C.B. (2000) Structural Investigation of Gallium Oxide (β-Ga2O3) Nanowires Grown by Arc-discharge. J. Cryst. Growth 220:494-500CrossRefGoogle Scholar
  5. 5.
    Morales A.M., Lieber C.M. (1998) A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 279:208-211CrossRefADSGoogle Scholar
  6. 6.
    Hanrath T., Korgel B.A. (2003) Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals. Adv. Mater. 15(5):437-440CrossRefGoogle Scholar
  7. 7.
    Wagner R.S., Ellis W.C. (1964) Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett 4(5):89-90CrossRefGoogle Scholar
  8. 8.
    Yan H.F., Xing Y.J., Hang Q.L., Yu D.P., Wang Y.P., Xu J., Xi Z.H., Feng S.Q. (2000) Growth of Amorphous Silicon Nanowires Via a Solid-Liquid-Solid Mechanism. Chem. Phys. Lett 323:224-228CrossRefGoogle Scholar
  9. 9.
    Yu D.P., Xing Y.J., Hang Q.L., Yan H.F., Xu J., Xi Z.H., Feng S.Q. (2001) Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism. Phys. E 9:305-309CrossRefADSGoogle Scholar
  10. 10.
    Paulose M., Varghese O.K., Grimes C.A. (2003) Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth. J. Nanosci. Nanotech. 3:4CrossRefGoogle Scholar
  11. 11.
    Prokes S.M., Arnold S. (2005) Stress-driven formation of Si nanowires. Appl. Phys. Lett. 86(193105):86-88Google Scholar
  12. 12.
    de Vasconcelos E., dos Santos F., da Silvas E., Boudinov H. (2006) Nanowires Growth on Si Wafers by Oxygen Implantation and Annealing. Appl. Surf. Sci 252:5572-5574CrossRefADSGoogle Scholar
  13. 13.
    Okamoto H., Massalski T.B. (1983) The Au-Si (Gold-Silicon) System. Bull. Alloy Phase Diag. 4(2):190-198Google Scholar
  14. 14.
    Tanaka T., Hara S. (2001) Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems. Z. Metallkde 92(5):467-472Google Scholar
  15. 15.
    Dinsdale A.T. (1991) SGTE Data for Pure Elements. Calphad 15(4):317-425CrossRefGoogle Scholar
  16. 16.
    Saunders N. (1985) Phase Diagrams Calculations for eight Glass-forming Alloys Systems. Calphad 9(4):297-309CrossRefGoogle Scholar
  17. 17.
    Teo B.K. (2003) Doing Chemistry on Low-dimensional Silicon Surfaces: Silicon Nanowires as Platform and Templates. Coord. Chem. Rev. 246:229-246CrossRefGoogle Scholar
  18. 18.
    Tankins E.S. (1971) Thermodynamic Properties of Dilute Solutions of Oxygen in Liquid Cu-Au Alloys. Met. Trans 2(11):3245-3247Google Scholar
  19. 19.
    Wriedt H.A. (1991) The O-Si (Oxygen-Silicon) System. Bull. Alloy Phase Diag. 11(1):43-61Google Scholar
  20. 20.
    Gulbransen E.A., Jansson S.A. (1972) The High Temperature Oxidation, Reduction and Volatilization Reactions of Silicon and Silicon Carbides. Oxidation of Metals 4(3):181-201CrossRefGoogle Scholar
  21. 21.
    Hallstedt B. (1992) Thermodynamic Assessment of the Silicon-Oxygen System. Calphad 16(1):53-61CrossRefGoogle Scholar
  22. 22.
    Schunurre S.M., Gröber J., Schmid-Fetzer R. (2004) Thermodynamics and Phase Stability in the Si-O system. J. Non-Cryst. Solids 336:1-25CrossRefGoogle Scholar
  23. 23.
    Jackson K.A. (1988) A Note on the Si-O Phase Diagram. Bull. Alloy Phase Diag. 9(5):548-549Google Scholar
  24. 24.
    Hollinger G., Jugnet Y., Duc T.M. (1977) Effect of Heat Treatment on Chemical and Electronic Structure of Solid SiO: An Electron Spectroscopy Study. Solid State Commun. 21:277-280CrossRefGoogle Scholar
  25. 25.
    Rocabois P., Chatillon C., Bernard C. (1992-1993) Vapour Pressure and Evaporation Coefficient of SiO (amorphous) and SiO2 +Si Mixtures by the Multiple Knudsen Mass Spectrometric Method. Rev. Int. Hautes Temp. Réfractaires 28(1):37-48Google Scholar
  26. 26.
    Chatillon C., Rocabois P., Bernard C. (1999) High Temperature Analysis of the Thermal Degradation of Silicon-Based Materials. I: Binary Si-O, Si-C and Si-N Compounds. High Temperatures, High Pressures 31:413-432CrossRefGoogle Scholar
  27. 27.
    Swalin R.A. (1962) Thermodynamics of Solids. John Wiley, New YorkzbMATHGoogle Scholar
  28. 28.
    Yeum K.S., Speiser R., Poirier D.R. (1989) Estimation of the Surface Tension of Binary Liquid Alloys. Metall. Trans. B20:693-703Google Scholar
  29. 29.
    Jian Z., Kuribayashi K., Jie W. (2002) Solid-Liquid Interface Energy of Metals at Melting Point and Supercooled State. Mater. Trans 43(4):721-726CrossRefGoogle Scholar
  30. 30.
    Kang L.T., Qiao Z.Y., Yuan B.Y., Cao Z.M. (2003) Calculation of Interfacial Tension based on Sublattice Model and Thermodynamic data. Calphad 27(1):57-64CrossRefGoogle Scholar
  31. 31.
    Bahloul-Hourlier D., Doucey B., Goursat P., Laborde E. (2001) Investigations on Thermal Reactivity of Si/C/N Nanopowders Produced by Laser Aerosol or Gas Interactions. J. Mater. Chem 11:2028-2034CrossRefGoogle Scholar
  32. 32.
    Latournerie J., Dempsey P., Bonnet J.P., Bahloul-Hourlier D. (2006) Silicon Oxycarbide Glasses: Part 1- Thermochemical stability. J. Am. Ceram. Soc. 89(5):1485-1491CrossRefGoogle Scholar
  33. 33.
    Golcewski J.A., Seifert H.J., Aldinger F. (1998) A Thermodynamic Model of Amorphous Silicates. Calphad 22(3):381-396CrossRefGoogle Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  1. 1.Institut d’Electronique, de Microélectronique et de NanotechnologiesUMR-CNRS 8520Villeneuve d’AscqFrance
  2. 2.Laboratoire de Métallurgie Physique et Génie des MatériauxUMR-CNRS 8517, Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations