Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 28, Issue 2, pp 158–166 | Cite as

Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System

  • Shihuai Zhou
  • Yi Wang
  • Frank G. Shi
  • Ferdinand Sommer
  • Long-Qing Chen
  • Zi-Kui Liu
  • Ralph E. NapolitanoEmail author
Basic and Applied Research

Abstract

The phase equilibria associated with the binary Cu-Mg system are analyzed by applying results from first-principles calculations to a general solution thermodynamics treatment. Differing from previously reported models, we employ a four-species association model for the liquid, while the terminal and intermediate solid phases are modeled as substitutional solutions with one or two sublattices, respectively. The zero-Kelvin enthalpies of formation for the intermediate compounds, Cu2Mg-C15 (cF24) and CuMg2-Cb (oF48) are computed using the Vienna Ab-initio Simulation Package (VASP). The Gibbs free energy functions for the individual phases are evaluated, and the resulting binary phase diagram is presented over the full composition range. While the phase diagram we propose exhibits only modest deviation from previously reported models of phase equilibria, our treatment provides better agreement with experimental reports of heat capacity and enthalpy of mixing, indicating a more self-consistent thermodynamic description of this binary system.

Keywords

thermodynamics phase diagram phase equilibria 

Notes

Acknowledgments

Work at the Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358.

References

  1. 1.
    A. Inoue and A. Takeuchi, Recent Progress in Bulk Glassy Alloys, Mater. Trans., JIM, 2002 43, p 1892-1906CrossRefGoogle Scholar
  2. 2.
    A. Inoue, H. Kimura, and A. Takeuchi, in Thermec-2003, TRANS TECH PUBLICATIONS LTD, Zurich-Uetikon, 2003, vol. 426-4, p 3-10Google Scholar
  3. 3.
    J.F. Loffler, Bulk Metallic Glasses, Intermetallics, 2003 11, p 529-540CrossRefGoogle Scholar
  4. 4.
    A. Inoue and A. Takeuchi, Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystalline Alloys, Mater. Sci. Eng., A, 2004 375-377, p 16-30CrossRefGoogle Scholar
  5. 5.
    S.H. Zhou and R.E. Napolitano, Phase Equilibria and Thermodynamic Limits for Partitionless Crystallization in the Al-La Binary System, Acta Mater., 2006 54, 831-840CrossRefGoogle Scholar
  6. 6.
    A. Inoue, Amorphous, Nanoquasicrystalline and Nanocrystalline Alloys in Albased Systems, Prog. Mater Sci., 1998 43, 365-520CrossRefGoogle Scholar
  7. 7.
    F. Sommer, G. Bucher and B. Predel, Thermodynamic Investigations of Mg-Cu and Mg-Ni Metallic Glasses, J. Phys. Colloq., 1980 C8, 563-566Google Scholar
  8. 8.
    T. Masumoto and R. Maddin, Structural Stability and Mechanical Properties of Amorphous Metals, Mater. Sci. Eng., 1975 19, 1-24CrossRefGoogle Scholar
  9. 9.
    T. Masumoto and R. Maddin, Mechanical Properties of Pd-20 At. Percent Si Alloy Quenched from the Liquid State, Acta Met., 1971 19, 725-741CrossRefGoogle Scholar
  10. 10.
    W.L. Johnson, In: H. Beck, H.J. Guntherodt, Eds., Glassy Metals, Springer-Verlag, Berlin, 1983Google Scholar
  11. 11.
    F.P. Messel, S. Frota-Pessoa, J. Wood, J. Tyler and J. E. Keem, Electronic Density of States in Amorphous Zirconium Alloys, Phys. Rev. B, 1983 27, 1596-1604CrossRefADSGoogle Scholar
  12. 12.
    M. Tenhover and W. L. Johnson, Superconductivity and the Electronic Structure of Zr- and Hf-based Metallic Glasses, Phys. Rev. B, 1983 27, 1610-1618CrossRefADSGoogle Scholar
  13. 13.
    C.A. Coughanowr, I. Ansara, R. Luoma, M. Hamalainen and H.L. Lukas, Assessment of the Cu-Mg System, Z. Metallkd., 1991 82, 574-581Google Scholar
  14. 14.
    Y. Zou and Y.A. Chang, Thermodynamic Calculation of the Mg-Cu Phase Diagram, Z. Metallkd., 1993 84, 662-667Google Scholar
  15. 15.
    W.E. Lukens and C.N.J. Wagner, The Structure of Liquid Cu-Mg Alloys, Z. Naturforsch., 1973 28, 297-304Google Scholar
  16. 16.
    H. Feufel and F. Sommer, Thermodynamic Investigations of Binary-Liquid and Solid Cu-Mg and Mg-Ni Alloys and Ternary Liquid Cu-Mg-Ni Alloys, J. Alloy. Compd., 1995 224, 42-54CrossRefGoogle Scholar
  17. 17.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, in Academic Press, Inc., New York, 1970, vol. 4Google Scholar
  18. 18.
    N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford , New York, 1998Google Scholar
  19. 19.
    G. Grime and W. Morris-Jones, An X-ray Investigation of the Copper-Magnesium Alloys, Phil. Mag., 1929 7, 1113-1134Google Scholar
  20. 20.
    G.G. Urazova, Experimental Measurements for Cu-Mg System, Zh. Russ. Fiz-Khim. Obschestva, 1907 39, 1556-1581Google Scholar
  21. 21.
    R. Sahmen, Metallographic Announcements from the Institute for Inorganic Chemistry of the University of Gottingen LVIII Concerning the Alloys of Copper with Cobalt, Iron, Manganese and Magnesium, Z. Anorg. Chem., 1908 57, 1-33CrossRefGoogle Scholar
  22. 22.
    W.R.D. Jones, The copper-magnesium Alloys. Part IV. The Equilibrium Diagram, J. Inst. Met., 1931 46, 395-419Google Scholar
  23. 23.
    I.L. Rogelberg, Cu-Mg Phase Diagram, Tr. Gos. Nauchn. -Issled., 1957 16, 82-89Google Scholar
  24. 24.
    P. Bagnoud and P. Feschotte, Binary Systems Mg-Cu and Mg-Ni, Particularly the Non-Stoichiometry of the MgCu2 and MgNi2 Laves Phases, Z. Metallkd., 1978 69, 114-120Google Scholar
  25. 25.
    M. Hansen, Note on the Magnesium-Rich Magnesium-Copper Alloys, J. Inst. Met., 1927 37, 93-100Google Scholar
  26. 26.
    N.I. Stepanov and I.I. Kornilov, Solubility of copper in magnesium in the solid state, Izvestiya Instituta Fiziko-Khimicheskogo Analiza, 1935 7, 89-98Google Scholar
  27. 27.
    A.S. Yue and R.S. Pierre, Ed., Metall. Soc. Conf., New York, Interscience Publishers, Inc., 1961, p 613-615Google Scholar
  28. 28.
    J.W. Jenkin, J. Inst. Met., 1927 37, 100-101Google Scholar
  29. 29.
    F. Sommer, J.J. Lee and B. Predel, Calorimetric Investigations of Liquid Alkaline Earth Metal Alloys, Ber. Bunsenges. Phys. Chem., 1983 87, 792-797Google Scholar
  30. 30.
    G.I. Batalin, V.S. Sudavtsova and M.V. Mikhailovskaya, Thermodynamic Properties of Liquid Alloys of the Cu--Mg Systems, Izv. V.U.Z. Tsvetn. Metall., 1987 2, 29-31Google Scholar
  31. 31.
    N.G. Schmahl and P. Sieben, NPL Symposium 9 on Phys. Chem. of Metallic Solutions and Intermetallic Compounds, London, HMSO, 1958, p 1-16Google Scholar
  32. 32.
    J.M. Juneja, G.N.K. Iyengar and K.P. Abraham, Thermodynamic Properties of Liquid (Magnesium + Copper) Alloys By Vapor-Pressure Measurements Made By a Boiling-Temperature Method, J. Chem. Thermodyn., 1986 18, 1025-1035CrossRefGoogle Scholar
  33. 33.
    S.P. Garg, Y.J. Bhatt and C.V. Sundaram, Thermodynamic Study of Liquid Cu-Mg Alloys by Vapour Pressure Measurements, Metall. Trans., 1973 4, 283-289Google Scholar
  34. 34.
    P. Sieben and N. G. Schmahl, Giesserei, 1966 18, 197-201Google Scholar
  35. 35.
    A.V. Kilibus, A.A. Gorshkov and B.M. Lepinskii, Trans. Inst. Met. Severdlosk., 1969 18, 55-62Google Scholar
  36. 36.
    R.C. King and O.J. Kleppa, A thermochemical Study of Some Selected Laves Phases, Acta Metall., 1964 12, 87-97CrossRefGoogle Scholar
  37. 37.
    B. Predel and H. Ruge, Beitrag zur Frage nach den Bindungsverhaltnissen in Laves-Phsen, Mater. Sci. Eng., 1972 9, 333-339 (in German)CrossRefGoogle Scholar
  38. 38.
    M. Arita, Y. Ichinose, and M. Someno, Thermodynamic Properties of the Ti-Cu, Ti-Ni and Mg-Cu Systems by Metal-Hydrogen Equilibration, Metall. Soc. AIME, Warrendale, PA, 1981, p 153-158Google Scholar
  39. 39.
    V.N. Eremenko, G.M. Lukashenko and R.I. Polotskaya, Thermodynamic Properties of Magnesium-Copper Compounds, Russ. Met., 1968 1, 126-129Google Scholar
  40. 40.
    A.T.W. Kempen, H. Nitsche, F. Sommer and E.J. Mittemeijer, Crystallization Kinetics of Amorphous Magnesium-Rich Magnesium-Copper and Magnesium-Nickel Alloys, Metall. Mater. Trans. A, 2002 33, 1041-1050CrossRefGoogle Scholar
  41. 41.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991 15, 317-425CrossRefGoogle Scholar
  42. 42.
    F. Sommer, Association Model for the Description of the Thermodynamic Functions of Liquid Alloys—Basic Concepts, Z. Metallkd., 1982 73, 72-86Google Scholar
  43. 43.
    H.G. Krull, R.N. Singh and F. Sommer, Generalised Association Model, Z. Metallkd., 2000 91, 356-365Google Scholar
  44. 44.
    B. Sundman and J. Agren, A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications, 1981, J. Phy. Chem Solids, 42, p 297-301CrossRefGoogle Scholar
  45. 45.
    G. Kresse, T. Demuth, and F. Mittendorfer, VAMP/VASP, http://www.cms.mpi.univie.ac.at/vasp/, 2003
  46. 46.
    D. Vanderbilt., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990 41, 7892-7895CrossRefADSGoogle Scholar
  47. 47.
    G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method, Phys. Rev. B, 1999 59, 1758-1775CrossRefADSGoogle Scholar
  48. 48.
    C.A. Angell, Formation of Glasses from Liquids and Biopolymers, Science, 1995 267, 1924-1935CrossRefADSGoogle Scholar
  49. 49.
    F. Sommer, Thermodynamics of Liquid Alloys, Mater. Sci. Eng. A, 1997 226, 757-762CrossRefGoogle Scholar
  50. 50.
    S.H. Zhou, J. Schmid and F. Sommer, Thermodynamic Properties of Liquid, Undercooled Liquid and Amorphous Al-Cu-Zr and Al-Cu-Ni-Zr Alloys, Thermochim. Acta, 1999 339, 1-9CrossRefGoogle Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • Shihuai Zhou
    • 1
    • 4
  • Yi Wang
    • 1
  • Frank G. Shi
    • 2
  • Ferdinand Sommer
    • 3
  • Long-Qing Chen
    • 1
  • Zi-Kui Liu
    • 1
  • Ralph E. Napolitano
    • 4
    • 5
    Email author
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvineUSA
  3. 3.Max-Planck-Institute for Metals ResearchStuttgartGermany
  4. 4.Materials & Engineering Physics Program, Ames LaboratoryUSDOEAmesUSA
  5. 5.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations