Journal of Phase Equilibria and Diffusion

, Volume 26, Issue 6, pp 605–612 | Cite as

Thermodynamic reassessment of the Cu-O phase diagram

  • L. Schramm
  • G. Behr
  • W. Löser
  • K. Wetzig
Article

Abstract

Parts of the copper-oxygen equilibrium phase diagram were reassessed using the calculation of phase diagram technique (CALPHAD). The model parameters were optimized to yield the best fit between calculated and experimentally determined phase equilibria at elevated oxygen pressures up to 11 MPa. The Cu-O liquid phase is represented by the two-sublattice model for ionic liquids containing copper on the cation sublattice with formal valences of Cu+1, Cu+2, and Cu+3. The presence of Cu+3 ions in the liquid phase, corresponding to a formation of Cu2O3 species, was the key assumption of this model. Congruent melting of CuO at 1551 K under an oxygen pressure of ∼126.8 MPa is predicted, which is considerably below previous theoretical values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Cava, B. Batlogg, R.B. Vandover, J.J. Krajewski, J.V. Waszcak, R.M. Fleming, W.F. Peck, L.W. Rupp, P. Marsh, A.C.W.P. James, and L.F. Schneemeyer, Superconductivity at 60-K in LA2-XSRXCACU2O6—The Simplest Double-Layer Cuprate, Nature, 1990, Vol 345 (No. 6276), p 602–604CrossRefADSGoogle Scholar
  2. 2.
    E. Dagotto and T.M. Rice, Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials, Science, 1996, Vol 271 (No. 5249), p 618–623CrossRefADSGoogle Scholar
  3. 3.
    B. Hallstedt, D. Risold, and L.J. Gauckler, Thermodynamic Assessment of the Copper-Oxigen System, J. Phase Equilibria, Vol 15, 1994, p 483–499Google Scholar
  4. 4.
    H.S. Roberts and F.H. Smyth, The System Copper: Cupric Oxide: Oxygen, J. Am. Chem. Soc., Vol 43, 1921, p 1061–1079CrossRefGoogle Scholar
  5. 5.
    A.V. Kosenko and G.A. Emel’chenko, Equilibrium Phase Relationships in the System Cu-O under High Oxygen Pressure, J. Phase Equilibria, Vol 22, 2001, p 12–19CrossRefGoogle Scholar
  6. 6.
    R. Schmid, A Thermodynamic Analysis of the Cu-O System with an Associated Solution Model, Metall. Trans. B, Vol 14, 1983, p 473–481Google Scholar
  7. 7.
    A. Boudéne, K. Hack, A. Mohammad, D. Neuschütz, and E. Zimmermann, Experimental Investigating and Thermochemical Assessment of the System Cu-O, Z. Metallkd, Vol 83, 1992, p 663–668Google Scholar
  8. 8.
    V.A. Lysenko, Neorganitcheskie Materialy, Vol 34, 1998, p 1108–1114 (in Russian)Google Scholar
  9. 9.
    B. Hallstedt and L.J. Gauckler, Revision of the Thermodynamic Descriptions of the Cu-O, Ag-O, Ag-Cu-O, Bi-Sr-O, Bi-Ca-O, Bi-Cu-O, Sr-Cu-O, Ca-Cu-O and Sr-Ca-Cu-O Systems, Computer Coupling of Phase Diagrams and Thermochemistry, Vol 27, 2003, p 177–191Google Scholar
  10. 10.
    M.T. Calavaguera-Mora, J.T. Touron, J. Rodriquez-Viejo, and N. Clavaguera, Thermodynamic Description of the Cu-O System. J. Alloys Compd., Vol 377, 2004, p 8–16CrossRefGoogle Scholar
  11. 11.
    Termicheskie Konstanty Veshchestv, Part I: O, H, Halogenes, Inert Gases, 1965; Part II: Chalcogenides, 1966; Part III: N, P, As, Sb, Bi, 1969; Part IV: C, Si, Ge, Sn, Pb, 1970; Part V: B, Al, Ga, Ir, Tl, 1971; Part VI: Zn, Cd, Hg, Cu, Ag, Au, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, 1972; Part VIII: SC, Y, Lanthanides, Actinides, 1978; Part X: Alkaline Metals, 1981; P. Glushko and V.A. Medvedev, Ed., Akademyia Nauk, Moscow, U.S.S.R.Google Scholar
  12. 12.
    D.R. Stuell et al., JANAF, Thermochemical Tables, M.W. Chase, et al., Ed., U.S. Dept. of Commerce/Natl. Bur. Stand., US Governmt. Printing Office, 1971, J. Phys. Chem. Ref. Data, 1985, Vol 14, p 1Google Scholar
  13. 13.
    M. O’Keeffe and J-O. Brown, The Crystal Structure of Paramelanokite, Cu4O3, Am. Mineral., Vol 63, 1978, p 180Google Scholar
  14. 14.
    Gmelin’s Handbuch der Anorganischen Chemie, Kupfer-Teil, B-Lieferung 1, (Gremlin’s Handbook of Anorganic Chemistry) Verlag Chemie, Weinheim, Germany, 1958, p 133–138 (in German)Google Scholar
  15. 15.
    R. Scholder and U. Voelskow, Über Cuprate (III), (About Cuprates [III]) Z. Anorg. Allg. Chem., Vol 256, 1951, p 266 (in German)Google Scholar
  16. 16.
    G. Krabbes, W. Bieger, U. Wiesner, and A. Teresiak: Isothermal Sections and primary Crystallization in the Quasiternary YO1.5-BaO-CuOx System at p(O2)=0.21 105 Pa, J. Solid State Chem., 1993, 103, p 420–432CrossRefADSGoogle Scholar
  17. 17.
    U. Ammerahl, G. Dhalenne, A. Revcolevschi, J. Berthon, and H. Moudden: Crystal growth and Characterization of the Spin-Ladder Compound (Sr,Ca)14Cu24O41, J. Cryst. Growth, 1998, 193, p 55–60CrossRefADSGoogle Scholar
  18. 18.
    G. Behr, W. Löser, M-O. Apostu, W. Gruner, M. Hücker, L. Schramm, D. Souptel, and J. Werner: Floating Zone Growth of CuO Under Elevated Oxygen Pressure and its Relevance for the Crystal Growth of Cuprates, J. Cryst. Growth, Vol 40 (No.1/2), 2005, p 21–25Google Scholar
  19. 19.
    J.B. Goodenough and A. Manthiram, Crystal Chemistry and Superconductivity in the Copper Oxides, Chemistry of High Temperature Superconductors, C.N.R. Rao, Ed., World Scientific Publishing Co., 1991, p 1–56Google Scholar
  20. 20.
    D.D. Sarma, Investigation of the Electronic Structure of the Cuprate Superconductors Using High-Energy Spectroscopies, Chemistry of High Temperature Superconductors, C.N.R. Rao, Ed., World Scientific Publishing Co. Pte. Ltd., 1991, p 348–378Google Scholar
  21. 21.
    D.D. Sarma, O. Strebel, C.T. Simmons, U. Neukirch, and G. Kaindl, Electronic Structure of High-T c Superconductors from Soft-X-ray Absorption, Phys. Rev. B, Vol 37, No. 16, 1988, p 9784–9787CrossRefADSGoogle Scholar
  22. 22.
    CRC Handbook of Chemistry and Physics, D.R. Lide, Ed., CRC Press, 1994, p 6–49Google Scholar
  23. 23.
    A. Dinsdale, SGTE Data for Pure Elements, CALPHAD, Vol 15, 1991, p 317–425CrossRefGoogle Scholar
  24. 24.
    R.H. Lamoreaux and D.L. Hildenbrand, High-Temperature Vaporization Behaviour of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, J. Phys. Chem. Ref. Data, Vol 16, 1987, p 419–443ADSCrossRefGoogle Scholar
  25. 25.
    O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances 1, Springer-Verlag, 1991, p 603Google Scholar
  26. 26.
    B. Sundman, Modification of the Two-Sublattice Model for Liquids, CALPHAD, Vol 15, No. 2, 1991, p 109–119CrossRefGoogle Scholar
  27. 27.
    N. Saunders and A.P. Miodownik, CALPHAD, Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon Materials Series Vol. 1, Elsevier Science Ltd, 1998, p 92Google Scholar
  28. 28.
    J. Xue and R. Dieckmann, The Non-Stoichiometry and the Point Defect Structure of Cuprous Oxide (Cu2−δO), J. Phys. Chem. Solids, Vol 51, 1990, p 1263–1275CrossRefADSGoogle Scholar
  29. 29.
    J. Xue and R. Dieckmann, The High-Temperature Phase Diagram of the Cu-O System in Stability Region of Cuprous Oxide (Cu2−δO), High Temp. High Press., Vol 24, 1992, p 271–284Google Scholar
  30. 30.
    M.M. O’Keeffe and F.S. Stone, The Magnetic Susceptibility of Cupric Oxide, J. Phys. Chem. Solids, Vol 23, 1962, p 261–266CrossRefGoogle Scholar
  31. 31.
    M.S. Seehra, Z. Feng, and R. Gopalakrishnan, Magnetic Phase Transitions in Cupric Oxide, J. Phys. C. Solid State Phys., Vol 21, 1988, p L1051-L1054CrossRefADSGoogle Scholar
  32. 32.
    B. Jansson, Trita-Mac-0234, Royal Institute of Technology, Stockholm, Sweden, 1984Google Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • L. Schramm
    • 1
  • G. Behr
    • 1
  • W. Löser
    • 1
  • K. Wetzig
    • 1
  1. 1.IFW Dresden, Leibniz-Institut für Festkörper- und WerkstoffforschungDresdenGermany

Personalised recommendations