Journal of Phase Equilibria and Diffusion

, Volume 25, Issue 4, pp 329–345 | Cite as

Critical thermodynamic evaluation and optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 Systems

  • In-Ho Jung
  • Sergei A. Decterov
  • Arthur D. Pelton


A complete literature review, critical evaluation, and thermodynamic modeling of the phase diagrams and thermodynamic properties of all oxide phases in the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 systems at 1 bar total pressure are presented. Optimized model equations for the thermodynamic properties of all phases are obtained that reproduce all available thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures at all compositions. The database of the model parameters can be used along with software for Gibbs energy minimization to calculate all thermodynamic properties and any type of phase diagram section. The modified quasichemical model was used for the liquid slag phase and sublattice models, based upon the compound energy formalism, were used for the spinel, pyroxene, and monoxide solid solutions. The use of physically reasonable models means that the models can be used to predict thermodynamic properties and phase equilibria in composition and temperature regions where data are not available.


Gibbs Energy Cordierite Cation Distribution Liquid Slag Primary Crystallization Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Eriksson, P. Wu, and A.D. Pelton: “Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the Magnesia-Alumina, Manganese(II) Oxide-Al2O3, Ferrous Oxide-Al2O3, Sodium Oxide-Al2O3, and Potassium Oxide-Al2O3 Systems,” Calphad, 1993, 17, pp. 189–205.CrossRefGoogle Scholar
  2. 2.
    B. Hallstedt: “Thermodynamic Assessment of the System MgO-Al2O3,” J. Am. Ceram. Soc., 1992, 75, pp. 1497–1507.CrossRefGoogle Scholar
  3. 3.
    B. Hallstedt: “Thermodynamic Assessment of the CaO-MgO-Al2O3 System,” J. Am. Ceram. Soc., 1995, 78, pp. 193–98.CrossRefGoogle Scholar
  4. 4.
    S.A. Decterov, E. Jak, P.C. Hayes, and A.D. Pelton: “Experimental Study of Phase Equilibria and Thermodynamic Optimization of the Fe-Zn-O System,” Metall. Mater. Trans. B., 2001, 32 B, pp. 643–57.CrossRefGoogle Scholar
  5. 5.
    A.D. Pelton and M. Blander: “Computer-Assisted Analysis of the Thermodynamic Properties and Phase Diagrams of Slags” in Proceedings of the Second International Symposium on Metallurgical Slags and Fluxes, TMS-AIME, Warrendale, PA, 1984.Google Scholar
  6. 6.
    A.D. Pelton and M. Blander: “Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasi-Chemical Approach. Application to Silicate Slags,” Metall. Trans. B, 1986, 17B, pp. 805–15.ADSGoogle Scholar
  7. 7.
    A. D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin, and Y. Dessureault: “The Modified Quasichemical Model. I—Binary Solutions,” Metall. Mater. Trans. B, 2000, 31B, pp. 651–59.CrossRefADSGoogle Scholar
  8. 8.
    A.D. Pelton and P. Chartrand: “The Modified Quasichemical Model. II—Multicomponent Solutions,” Metall. Mater. Trans. A, 2001, 32A, pp. 1355–60.CrossRefADSGoogle Scholar
  9. 9.
    P. Wu, G. Eriksson, and A.D. Pelton: “Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the Calcia-Iron(II) Oxide, Calcia-Magnesia, Calcia-Manganese(II) Oxide, Iron(II) Oxide-Magnesia, Iron(II) Oxide-Manganese(II) Oxide, and Magnesia-Manganese(II) Oxide Systems,” J. Am. Ceram. Soc., 1993, 76, pp. 2065–75.CrossRefGoogle Scholar
  10. 10.
    G. Eriksson and A.D. Pelton: “Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 Systems,” Metall. Trans., 1993, 24B, pp. 807–16.Google Scholar
  11. 11.
    P. Wu, G. Eriksson, A.D. Pelton, and M. Blander: “Prediction of the Thermodynamic Properties and Phase Diagrams of Silicate Systems: Evaluation of the FeO-MgO-SiO2 System,” ISIJ Inter., 1993, 33, pp. 26–35.Google Scholar
  12. 12.
    A.D. Pelton: “A General ‘Geometric’ Thermodynamic Model for Multicomponent Solutions,” Calphad, 2001, 25, pp. 319–28.CrossRefGoogle Scholar
  13. 13.
    M. Hillert, B. Jansson, and B. Sundman: “Application of the Compound-Energy Model to Oxide Systems,” Z. Metallkd., 1988, 79, pp. 81–87.Google Scholar
  14. 14.
    H.S.C. O’Neill and A. Navrotsky: “Cation Distributions and Thermodynamic Properties of Binary Spinel Solid Solutions,” Am. Mineral., 1984, 69, pp. 733–53.Google Scholar
  15. 15.
    S.A. Decterov, I.-H. Jung, Y.-B. Kang, E. Jak, V. Swamy, D. Kevorkov, and A.D. Pelton: “Report for Oxide Database Development,” CRCT, Ecole Polytechnique, Montreal, 2002.Google Scholar
  16. 16.
    N. Morimoto: “Nomenclature of Pyroxenes,” Mineral. Mag., 1988, 52, pp. 535–50.CrossRefGoogle Scholar
  17. 17.
    P. Shi, S.K. Saxena, Z. Zang, and B. Sundman: “Thermodynamics of the Ca-Mg-Fe-Al-Si-O Pyroxenes: 1. Theoretical Model and Assessment of the Ca-Mg-Si-O System,” Calphad, 1994, 18, pp. 47–69.CrossRefGoogle Scholar
  18. 18.
    I.-H. Jung, S.A. Decterov, and A.D. Pelton: “Critical Thermodynamic Evaluation and Optimization of the CaO-MgO-SiO2 System,” J. Eur. Ceram. Soc., 2003 (in press).Google Scholar
  19. 19., 2002.Google Scholar
  20. 20.
    I.-H. Jung, S.A. Decterov, and A.D. Pelton: “Thermodynamic Modeling of the CaO-MgO-Al2O3-SiO2 System,” in preparation.Google Scholar
  21. 21.
    G.A. Rankin and H.E. Merwin: “The Ternary System CaO-Al2O3-MgO,” J. Am. Chem. Soc., 1916, 38, pp. 568–88.CrossRefGoogle Scholar
  22. 22.
    A.M. Alper, R.N. McNally, P.H. Ribbe, and R.C. Doman: “The System MgO-MgAl2O4,” J. Am. Ceram. Soc., 1962, 45, pp. 263–68.CrossRefGoogle Scholar
  23. 23.
    D. Viechnicki, F. Schmid, and J.W. Mccauley: “Liquidus-Solidus Determinations in the System MgAl2O4-Al2O3,” J. Am. Ceram. Soc., 1974, 57, pp. 47–48.CrossRefGoogle Scholar
  24. 24.
    W.P. Whitney and V.S. Stubican: “Interdiffusion in the System MgO-MgAl2O4,” J. Am. Ceram. Soc., 1971, 54, pp. 349–52.CrossRefGoogle Scholar
  25. 25.
    V.S. Stubican and R. Roy: “Mechanism of the Precipitation of the Spinel from MgO-Al2O3 Solid Solutions,” J. Phys. Chem. Solids, 1965, 26, pp. 1293–97.CrossRefADSGoogle Scholar
  26. 26.
    A.F. Henriksen and W.D. Kingery: “The Solid Solubility of Sc2O3, Al2O3, Cr2O3, SiO2 and ZrO2 in MgO,” Ceramurgia Int., 1979, 5, pp. 11–17.CrossRefGoogle Scholar
  27. 27.
    T. Mori: “Solubility of Aluminum Oxide in Magnesium Oxide,” Yogyo Kyokaishi, 1982, 90, pp. 551–52.Google Scholar
  28. 28.
    A.S. Frenkel, K.M. Shmukler, D.Ya. Sukharevskij, and N.V. Gul’ko: Dokl. Akad. Nauk SSSR, 1960, 130, pp. 1095–98.Google Scholar
  29. 29.
    H.U.B. Viertel and F.K. Seifert: “Thermal Stability of Defect Spinels in the System MgAl2O4-Al2O3,” N. Jb. Miner. Abh., 1980, 140, pp. 89–101.Google Scholar
  30. 30.
    A. Navrotsky, B. Wechsler, K. Geisinger, and F. Seifert: “Thermochemistry of MgAl2O4-Al8/3O4 Defect Spinels,” J. Am. Ceram. Soc., 1986, 69, pp. 418–422.CrossRefGoogle Scholar
  31. 31.
    A.M. Lejus: “Sur la Formation à Haute Température de Spinelles non Stoechiométriques et de Phases Dérivées,” Revue Int. Haut. Temp. Refract., 1964, 1, pp. 53–95 (in French).Google Scholar
  32. 32.
    D.M. Roy, R. Roy, and E.F. Osborn: “The System MgO-Al2O3-H2O and Influence of Carbonate and Nitrate Ions on the Phase Equilibria,” Am. J. Sci., 1953, 251, pp. 337–61.CrossRefGoogle Scholar
  33. 33.
    K. Shirasuka and G. Yamaguchi: “Precise Measurement of the Crystal Data and the Solid Solution Range of the Defective Spinel Magnesium Oxide.n (Aluminum Oxide),” Yogyo Kyokaishi, 1974, 82, pp. 34–37.Google Scholar
  34. 34.
    H. Saalfeld and H. Jagodzinski: “Segregation of Mg-Al Spinels With an Excess of Al2O3,” Z. Krist., 1957, 109, pp. 87–109.CrossRefGoogle Scholar
  35. 35.
    A.M. Lejus and R. Collongues: “Sur la Formation à Haute Température de Phases Type Alumine δ dans Plusieurs Systemes à Base d’Alumine,” Acad. Sci., 1962, pp. 2780–2781 (in French).Google Scholar
  36. 36.
    Y. Chiang and W.D. Kingery: “Grain-Boundary Migration in Nonstoichiometric Solid Solutions of Magnesium Aluminate Spinel: Grain Growth Studies,” J. Am. Ceram. Soc., 1989, 72, pp. 271–77.CrossRefGoogle Scholar
  37. 37.
    K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, 40, pp. 1059–66.Google Scholar
  38. 38.
    S.K. Roy and R.L. Coble: “Solubilities of Magnesia, Titania, and Magnesium Titanate in Aluminum Oxide,” J. Am. Ceram. Soc., 1968, 51, pp. 1–6.CrossRefGoogle Scholar
  39. 39.
    K. Ando and M. Momoda: “Solubility of Magnesium Oxide in Single-Crystal Aluminum Oxide,” J. Ceram. Soc. Jpn. Int. Ed., 1987, 95, pp. 343–47.Google Scholar
  40. 40.
    E.G. King: “Heat Capacities at Low Temperatures and Entropies at 298.16 K of Crystalline Calcium and Magnesium Aluminates,” J. Phys. Chem., 1955, 59, pp. 218–19.CrossRefGoogle Scholar
  41. 41.
    K.R. Bonnickson: “High Temperature Heat Contents of Aluminates of Calcium and Magnesium,” J. Phys. Chem., 1955, 59, pp. 220–21.CrossRefGoogle Scholar
  42. 42.
    Ya.A. Landa and I.A. Naumova: “Determining the Enthalpy and Specific Heat of Magnesia Spinels in the Range 1400–2200 K,” Ogneupory, 1979, pp. 9–12.Google Scholar
  43. 43.
    P. Richet and G. Fiquet: “High-Temperature Heat Capacity and Premelting of Minerals in the System MgO-CaO-Al2O3-SiO2,” J. Geophys. Res., 1991, 96, pp. 445–56.ADSCrossRefGoogle Scholar
  44. 44.
    T.V. Charlu, R.C. Newton, and O.J. Kleppa: “Enthalpies of Formation of 970 K of Compounds in the System Magnesia-Alumina Silica from High Temperature Solution Calorimetry,” Geochim. Cosmochim. Acta, 1975, 39, pp. 1487–97.CrossRefADSGoogle Scholar
  45. 45.
    J.A. Shearer and O.J. Kleppa: “Enthalpies of Formation of Spinel (MgAl2O4), Pyroxene (MgSiO3), Olivine (Mg2SiO4). Kyanite (Al2SiO5), and Sillimanite (Al2SiO5) by Oxide Melt Solution Calorimetry,” J. Inorg. Nucl. Chem., 1973, 35, pp. 1073–78.CrossRefGoogle Scholar
  46. 46.
    A. Navrotsky and O.J. Kleppa: “Thermodynamics of Formation of Simple Spinels,” J. Inorg. Nucl. Chem., 1968, 30, pp. 479–98.CrossRefGoogle Scholar
  47. 47.
    K.T. Jacob and K.P.W.Y. Jayadevan: “Electrochemical Determination of the Gibbs Energy of Formation of MgAl2O4,” J. Am. Ceram. Soc., 1998, 81, pp. 209–12.CrossRefGoogle Scholar
  48. 48.
    L. Chamberlin, J.R. Beckett, and E. Stolper: “Palladium Oxide Equilibration and the Thermodynamic Properties of MgAl2O4 Spinel,” Am. Mineral., 1995, 80, pp. 285–96.Google Scholar
  49. 49.
    R.W. Taylor and H. Schmalzried: “The Free Energy of Formation of Some Titanates, Silicates, and Magnesium Aluminate From Measurements Made With Galvanic Cells Involving Solid Electrolytes,” J. Phys. Chem., 1964, 68, pp. 2444–49.CrossRefGoogle Scholar
  50. 50.
    E. Rosen and A. Muan: “Stability of MgAl2O4 at 1400°C as Derived from Equilibrium Measurements in CoAl2O4-MgAl2O4 Solid Solutions,” J. Am. Ceram. Soc., 1966, 49, pp. 107–08.CrossRefGoogle Scholar
  51. 51.
    K. Grjøtheim, O. Herstad, and J.M. Toguri: Can. J. Chem. 1961, 39, pp. 443–50.CrossRefGoogle Scholar
  52. 52.
    R.L. Altman: “Vaporization of Magnesium Oxide and its Reaction with Alumina,” J. Phys. Chem., 1963, 67, pp. 366–69.CrossRefGoogle Scholar
  53. 53.
    T. Sasamoto, H. Hara, and T. Sata: “Mass-Spectrometric Study of the Vaporization of Magnesium Oxide from Magnesium Aluminate Spinel,” Bull. Chem. Soc. Jpn., 1981, 54, pp. 3327–33.CrossRefGoogle Scholar
  54. 54.
    J.M. McHale, A. Auroux, A.J. Perrotta, and A. Navrotsky: “Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas,” Science (Washington, DC), 1997, 277, pp. 788–91.CrossRefGoogle Scholar
  55. 55.
    T. Yamanaka and Y. Takeuchi: “Order-Disorder Transition in MgAl2O4 Spinel at High Temperatures up to 1700 °C,” Z. Kristallogr., 1983, 165, pp. 65–78.CrossRefGoogle Scholar
  56. 56.
    R.C. Peterson, G.A. Lager, and R.L. Hitterman: “A Time-of-Flight Neutron Powder Diffraction Study of MgAl2O4 at Temperature up to 1273 K,” Am. Mineral., 1991, 76, pp. 1455–58.Google Scholar
  57. 57.
    S.A.T. Redfern, R. Harrison, H.St.C. O’Neill, and D.R.R. Wood: “Thermodynamics and Kinetics of Cation Ordering in MgAl2O4 Spinel up to 1600 °C from in Situ Neutron Diffraction.” Am. Mineral., 1999, 84, pp. 299–310.Google Scholar
  58. 58.
    H. Maekawa, S. Kato, K. Kawamura, and T. Yokokawa: “Cation Mixing in Natural MgAl2O4 Spinel: A High-Temperature 27Al NMR Study,” Am. Mineral., 1997, 82, pp. 1125–32.Google Scholar
  59. 59.
    B.J. Wood, R.J. Kirkpatrick, and B. Montez: “Order-Disorder Phenomena in MgAl2O4 Spinel,” Am. Mineral., 1986, 71, pp. 999–1006.Google Scholar
  60. 60.
    R.L. Millard, R. Peterson, and B.K. Hunter: “Temperature Dependence of Cation Disorder in MgAl2O4 Spinel Using 27Al and 17O Magic-Angle Spinning NMR,” Am. Mineral., 1992, 77, pp. 44–52.Google Scholar
  61. 61.
    G.B. Andreozzi, F. Princivalle, H. Skogby, and A.D. Giusta: “Cation Ordering and Structural Variations With Temperature in MgAl2O4 Spinel: An X-ray Single-Crystal Study,” Am. Mineral., 2000, 85, pp. 1164–71.Google Scholar
  62. 62.
    A. Navrotsky: “Cation Distribution Energies and Heats of Mixing in MgFe2O4-MgAl2O4-ZnFe2O3-ZnAl2O4. and NiAl2O4-ZnAl2O4 Spinels: Study by High-Temperature Calorimetry,” Am. Mineral., 1986, 71, pp. 1160–69.Google Scholar
  63. 63.
    K. Grjotheim, O. Herstad, and J.M. Toguri: “The Aluminum Reduction of Magnesium Compounds,” Can. Min. Metall., 1962, pp. 396–99.Google Scholar
  64. 64.
    J.H. Welch: “Ternary Compound Formation in the System CaO-Al2O3-MgO,” Nature, 1961, 4788, pp. 559–60.CrossRefADSGoogle Scholar
  65. 65.
    A.J. Majumdar: “The Quaternary Phase in High-Alumina Cement,” Trans. J Br. Ceram. Soc., 1964, 63, pp. 347–64.Google Scholar
  66. 66.
    M.R. Rao: “Liquidus Relations in the Quaternary Subsystem CaAl2O4-CaAl4O7-Ca2Al2SiO7-MgAl2O4,” J. Am. Ceram. Soc., 1968, 51, pp. 50–54.CrossRefGoogle Scholar
  67. 67.
    M.T. Melnik, A.A. Kachura, and N.V. Mokritskaya: “Phase Diagram of the Calcium Aluminate-Magnesium Aluminate-Magnesia (CaO-Al2O3-MgO-Al2O3-MgO,” Ogneupory, 1989, 4, pp. 27–28.Google Scholar
  68. 68.
    A.H. De Aza, P. Pena, and S. De Aza: “Ternary System Al2O3-MgO-CaO: I: Primary Phase Field of Crystallization of Spinel in the Subsystem MgAl2O4-CaAl4O7-CaO-MgO,” J. Am. Ceram. Soc., 1999, 82, pp. 2193–203.CrossRefGoogle Scholar
  69. 69.
    A.H. De Aza, J.E. Iglesias, P. Pena, and S. De Aza: “Ternary System Al2O3-MgO-CaO: Part II, Phase Relationships in the Subsystem Al2O3-MgAl2O4-CaAl4O7,” J. Am. Ceram. Soc., 2000, 83, pp. 919–27.CrossRefGoogle Scholar
  70. 70.
    M. Göbbels, E. Woermann, and J. Jung: “The Al-Rich Part of the System CaO-Al2O3-MgO. Part I. Phase Relationships,” J. Solid State Chem., 1995, 120, pp. 358–63.CrossRefGoogle Scholar
  71. 71.
    N. Iyi, M. Göbbels, and Y. Matsui: “The Al-Rich Part of the System CaO-Al2O3-MgO. Part II. Structure Refinement of Two New Magnetoplumbite-Related Phases,” J. Solid State Chem., 1995, 120, pp. 364–71.CrossRefADSGoogle Scholar
  72. 72.
    H. Ohta and H. Suito: “Activities in CaO-MgO-Al2O3 Slags and Deoxidation Equilibria of Al, Mg, and Ca,” ISIJ, 1996, 36, pp. 983–90.Google Scholar
  73. 73.
    M. Hino, S. Kinoshita, Y. Ehara, H. Itoh, and S. Ban-Ya: “Activity Measurement of the Constituents in Secondary Steelmaking Slag” in Proc. 5th Int. Sympos. Metall. Slags and Fluxes, 1997, pp. 53–57.Google Scholar
  74. 74.
    M. Allibert, C. Chatillon, and R. Lourtau: Rev Int. Hautes Temp. Refract., 1979, 16, pp. 33–37.Google Scholar
  75. 75.
    R.W. Nurse, J.H. Welch, and A.J. Majumdar: “The CaO-Al2O3 System in a Moisture-Free Atmosphere,” Trans. Brit. Ceram. Soc., 1965, 64, pp. 409–18.Google Scholar
  76. 76.
    J.W. Greig: “Immiscibility in Silicate Melts. Part I,” Am. J. Sci., 5th Ser., 1927, 13, pp. 1–44.Google Scholar
  77. 77.
    G.A. Rankin and H.E. Merwin: “The Ternary System MgO-Al2O3-SiO2,” Am. J. Sci., 1918, 45, pp. 301–25.CrossRefGoogle Scholar
  78. 78.
    W. Schreyer and J.F. Schairer: “Stable and Metastable Phase Relations in the System MgO-Al2O3-SiO2,” Carnegie Inst. of Washington, 1961, Yb. 60, pp. 144–47.Google Scholar
  79. 79.
    W.J. Schreyer and J.F. Schairer: “Compositions and Structural States of Anhydrous Mg-Cordierites: A Re-investigation of the Central Part of the System MgO-Al2O3-SiO2,” J. Petrol., 1961, 2, pp. 324–406.Google Scholar
  80. 80.
    M.L. Keith and J.F. Schairer: “The Stability Field of Sapphirine in the System MgO-Al2O3-SiO2,” J. Geol., 1952, 60, pp. 181–86.CrossRefADSGoogle Scholar
  81. 81.
    S. Aramaki and R. Roy: “The Mullite-Corundum Boundary in the Systems MgO-Al2O3-SiO2 and CaO-Al2O3-SiO2,” J. Am. Ceram. Soc., 1961, 42, pp. 644–45.CrossRefGoogle Scholar
  82. 82.
    C.M. Schlaudt and D.M. Roy: “Crystalline Solution in the System MgO-Mg2SiO4-MgAl2O4,” J. Am. Ceram. Soc., 1965, 48, pp. 248–51.CrossRefGoogle Scholar
  83. 83.
    K. Onuma and M. Arita: “Magnesium Silicate-Magnesium Aluminum Silicate (MgSiO3-MgAl2SiO6) Join and the Solubility of Aluminum Oxide in Enstatite at Atmospheric Pressure,” Ganseki Kobutsu Kosho Gakkaishi, 1975, 70, pp. 53–60.Google Scholar
  84. 84.
    P. Anastasiou and F. Seifert: “Solid Solubility of Aluminum Oxide in Enstatite at High Temperatures and 1–5 kbars Water Pressure,” Contrib. Mineral. Petrol., 1972, 34, pp. 272–87.CrossRefADSGoogle Scholar
  85. 85.
    R.M. Smart and F.P. Glasser: “The Subsolidus Phase Equilibria and Melting Temperatures of MgO-Al2O3-SiO2 Compositions,” Ceram. Int., 1981, 7, pp. 90–97.CrossRefGoogle Scholar
  86. 86.
    E.F. Osborn and A. Muan: Phase Equilibrium Diagrams of Oxide Systems, The American Ceramic Society and the Edward Orton Jr. Ceramic Foundation, Columbus, OH, 1960.Google Scholar
  87. 87.
    W.R. Foster: “Synthetic Sapphirine and Its Stability Relations in the System MgO-Al2O3-SiO2,” J. Am. Ceram. Soc., 1950, 33, pp. 73–84.CrossRefGoogle Scholar
  88. 88.
    S. Sakai and T. Kawasaki: “Phase Relations for Mg3Al2Si3O12 (Pyrope Composition) in the System MgO-Al2O3-SiO2 at Atmospheric Pressure,” Ganko, 1998, 93, pp. 18–26.Google Scholar
  89. 89.
    R.M. Smart and F.P. Glasser: “Phase Relations of Cordierite and Sapphirine in the System MgO-Al2O3-SiO2,” J. Mater. Sci., 1976, 11, pp. 1459–64.CrossRefADSGoogle Scholar
  90. 90.
    W.W. Weller and K.K. Kelley: “Low-Temperature Heat Capacities and Entropies at 298.15 K of Akermanite, Cordierite, Gehlenite, and Merwinite,” U.S. Bureau of Mines, Report of Investigation, 1963.Google Scholar
  91. 91.
    C.A. Geiger and H. Voigtlander: “The Heat Capacity of Synthetic Anhydrous Mg and Fe Cordierite,” Contrib. Mineral. Petrol., 2000, 138, pp. 46–50.CrossRefADSGoogle Scholar
  92. 92.
    R. Mueller, R. Naumann, and S. Reinsch: “Surface Nucleation of μ.-Cordierite in Cordierite Glass: Thermodynamic Aspects,” Thermochim. Acta, 1996, 280/281 (Vitrification, Transformation and Crystallization of Glasses), pp. 191–204.CrossRefGoogle Scholar
  93. 93.
    B.N. Roy and A. Navrotsky: “Thermochemistry of Charge-Coupled Substitutions in Silicate Glasses: The Systems MAlO2-SiO2 (M=Li,Na,K.Rb,Cs,Mg,Ca,Sr,Ba,Pb),” J. Am. Ceram. Soc., 1984, 67, pp. 606–10.CrossRefGoogle Scholar
  94. 94.
    P. Courtial and P. Richet: “Heat Capacity of Magnesium Aluminosilicate Melts,” Geochim. Cosmochim. Acta, 1993, 57, pp. 1267–75.CrossRefADSGoogle Scholar
  95. 95.
    R.H. Rein and J. Chipman: “Activities in the Liquide Solution SiO2-CaO-MgO-Al2O3 at 1600 °C,” TMS-AIME, 1965, 233, pp. 415–25.Google Scholar
  96. 96.
    D. Henderson and J. Taylor: “Thermodynamic Properties in the CaO-MgO-SiO2 and MgO-Al2O3-SiO2 Systems,” J. Iron Steel Inst., 204, 1966, pp. 41–45.Google Scholar
  97. 97.
    R.G. Berman: “Internally-Consistent Thermodynamic Data for Minerals in the System Sodium Oxide-Potassium Oxide-Calcium Oxide-Magnesium Oxide-Iron Oxide(FeO)-Iron Oxide(Fe2O3)-Alumina-Silica-Titania-Water-Carbon Dioxide,” J. Petrol., 1988, 29, pp. 445–522.Google Scholar
  98. 98.
    S. Aramaki and R. Roy: J. Am. Ceram. Soc., 1959, 42, pp. 644–45.CrossRefGoogle Scholar
  99. 99.
    A.T. Prince: “Liquidus Relations on 10% MgO Plane of the System Lime-Magnesia-Alumina-Silica,” J. Am. Ceram. Soc., 1954, 37, pp. 402–08.CrossRefGoogle Scholar

Copyright information

© ASM International 2004

Authors and Affiliations

  • In-Ho Jung
    • 1
  • Sergei A. Decterov
    • 1
  • Arthur D. Pelton
    • 1
  1. 1.Centre de Recherche en Calcul Thermochimique (CRCT) École Polytechnique de MontréalStation “Downtown” MontréalCanada

Personalised recommendations