Journal of Phase Equilibria

, Volume 22, Issue 1, pp 12–19 | Cite as

Equilibrium phase relationships in the system Cu-O under high oxygen pressure

  • A. V. Kosenko
  • G. A. Emel’chenko
Basic And Applied Research


The equilibrium phase relationships near the liquidus line of the system Cu2O-CuO-O2 (a part of wider system Cu-O) were determined under pure oxygen pressure from 0.001 to 11 MPa by three experimental methods: differential thermal analysis (DTA), thermogravimetry (TG), and thermobarometry (TB). The coordinates of the eutectic point between solid Cu2O and CuO were found to be PO2=0.069±0.001 MPa and T=1364±1 K. It was proved experimentally that, at least at temperatures up to 1526 K and oxygen pressures up to 11 MPa, CuO melts incongruently with liberation of gaseous oxygen and with the temperature dependence of PO2 obeying an Arrheniustype equation. The conditions for congruent melting of CuO were analyzed using the model, and it was found that congruent melting of CuO should occur at ≈ 1620 K under oxygen pressure ∼1000 MPa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1921Rob:.
    F.H. Smyth and H.S. Roberts: J. Am. Chem. Soc., 1920, vol. 42, pp. 2583–2607; H.S. Roberts and F.H. Smyth: J. Am. Chem. Soc., 1921, vol. 43, pp. 1061–79.CrossRefGoogle Scholar
  2. 1929Vog:.
    R. Vogel and W. Pocher: Z. Metallkd., 1929, vol. 21 (10), pp. 333–37 and vol. 21 (11), pp. 368–71 (in German).Google Scholar
  3. 1963Gad:.
    A.M.M. Gadalla, W.F. Ford, and J. White: Trans. Br. Cer. Soc., 1963, vol. 62, pp. 45–66.Google Scholar
  4. 1977Sad:.
    S.H. Sadat-Darbandi: “Determination of Equilibrium and Transport Properties of the Liquid Phases of the System Copper-Oxygen,” Ph.D. Dissertation, Technical University of Berlin, Berlin, 1977 (in German).Google Scholar
  5. 1981Syt:.
    V.V. Sytchev, A.A. Vasserman, A.D. Kozlov, G.A. Spiridonov, and V.A. Tsymarnyi: Thermodynamic Properties of Oxygen, Izdatel’stvo Standartov, Moscow, 1981 (in Russian).Google Scholar
  6. 1983Sch:.
    R. Schmid: Metall. Trans. B, 1983, vol. 14B, pp. 473–81.ADSCrossRefGoogle Scholar
  7. 1986Kar:.
    J. Karpinski and E. Kaldis: J. Cryst. Growth, 1986, vol. 79, pp. 477–83.ADSCrossRefGoogle Scholar
  8. 1986Kul:.
    I.S. Kulikov: Thermodynamics of Oxides (Reference Book), Metallurgia, Moscow, 1986, p. 225 (in Russian).Google Scholar
  9. 1991Apt:.
    I.L. Aptekar’, A.V. Kosenko, A.A. Zhokhov, V.M. Masalov, and G.A. Emel’chenko: Superconductivity, 1991, vol. 4, pp. 710–14.Google Scholar
  10. 1992Bou:.
    A. Boudène, K. Hack, A. Mohammad, D. Neuschütz, and E. Zimmermann: Z. Metallkd., 1992, vol. 83, pp. 663–68.Google Scholar
  11. 1994Hal:.
    B. Hallstedt, D. Risold, and L.J. Gauckler: J. Phase Equilibria, 1994, vol. 15, pp. 483–99.CrossRefGoogle Scholar
  12. 1996Kos:.
    A.V. Kosenko and G.A. Emel’chenko: Functional Mater., 1996, vol. 3, pp. 52–54.Google Scholar
  13. 1998Lys:.
    V.A. Lysenko: Neorganitcheskie Materialy, 1998, vol. 34, pp. 1108–14 (in Russian).Google Scholar

Copyright information

© ASM International 2001

Authors and Affiliations

  • A. V. Kosenko
    • 1
  • G. A. Emel’chenko
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of ScienceChernogolovka, Moscow RegionRussia

Personalised recommendations