Advertisement

Journal of Failure Analysis and Prevention

, Volume 19, Issue 2, pp 476–487 | Cite as

Photoelastic Stress Analysis of Crankpin Fillets of a Crankshaft

  • Riad AhmadEmail author
  • Ahmad O. Hasan
  • Hani Al-Rawashdeh
Technical Article---Peer-Reviewed
  • 22 Downloads

Abstract

The aim of this work was to investigate the stress analysis of crankpin fillets of a crankshaft. Fatigue failure in the crankpin fillet zone is one of the primary causes of the breakdown of crankshafts. In this paper, a polarization–optical method (photoelasticity) was used to study the distribution of stresses from bending in the crank-throw plane of a crankshaft on flat transparent photoelastic models. Results showed that the influence of the radius of crankpin fillet on the value of the stress concentration coefficient is estimated. Results achieved can be used in fatigue life calculation and optimization of this component.

Keywords

Crankshaft Crankpin fillet Photoelasticity Stress analysis 

Notes

References

  1. 1.
    F. Jiménez Espadafor, J. Becerra Villanueva, M. Torres García, Analysis of a diesel generator crankshaft failure. Eng. Fail. Anal. 16(7), 2333–2341 (2009).  https://doi.org/10.1016/j.engfailanal.2009.03.019 CrossRefGoogle Scholar
  2. 2.
    W.Y. Chien, J. Pan, D. Close, S. Ho, Fatigue analysis of crankshaft sections under bending with consideration of residual stresses. Int. J. Fatigue 27(1), 1–19 (2005).  https://doi.org/10.1016/j.ijfatigue.2004.06.009 CrossRefGoogle Scholar
  3. 3.
    R.K. Pandey, Failure of diesel-engine crankshafts. Eng. Fail. Anal. 10(2), 165–175 (2003).  https://doi.org/10.1016/S1350-6307(02)00053-5 CrossRefGoogle Scholar
  4. 4.
    D. Taylor, A.J. Ciepalowicz, P.I. Rogers, J. Devlukia, Prediction of fatigue failure in a crankshaft using the technique of crack modeling. Fatigue Fract. Eng. Mater. Struct. 20(1), 13–21 (1997).  https://doi.org/10.1111/j.1460-2695.1997.tb00397.x CrossRefGoogle Scholar
  5. 5.
    M. Guagliano, L. Vergani, Simplified approach to crack growth prediction in a crankshaft. Fatigue Fract. Eng. Mater. Struct. 17(11), 1295–1306 (1994).  https://doi.org/10.1111/j.1460-2695.1994.tb00217.x CrossRefGoogle Scholar
  6. 6.
    F.S. Silva, Analysis of a vehicle crankshaft failure. Eng. Fail. Anal. 10(5), 605–616 (2003).  https://doi.org/10.1016/S1350-6307(03)00024-4 CrossRefGoogle Scholar
  7. 7.
    S.K. Bhaumik, R. Rangaraju, M.A. Venkataswamy, T.A. Bhaskaran, M.A. Parameswara, Fatigue of crankshaft of an aircraft engine. Eng. Fail. Anal. 9(3), 255–263 (2002).  https://doi.org/10.1016/S1350-6307(01)00022-X CrossRefGoogle Scholar
  8. 8.
    H. Bayrakçeken, S. Tasgetiren, F. Aksoy, Failures of single cylinder diesel engines crank shafts. Eng. Fail. Anal. 14(4), 725–730 (2007).  https://doi.org/10.1016/j.engfailanal.2006.01.006 CrossRefGoogle Scholar
  9. 9.
    V. Infante, J.M. Silva, M.A.R. Silvestre, R. Baptista, Failure of a crankshafts of an aeroengine: a contribution for an accident investigation. Eng. Fail. Anal. 35(15), 286–293 (2013).  https://doi.org/10.1016/j.engfailanal.2013.02.002 CrossRefGoogle Scholar
  10. 10.
    M. Fonte, M. de Freitas, Marine main engine crankshaft failure analysis: a case study. Eng. Fail. Anal. 16(6), 1940–1947 (2009).  https://doi.org/10.1016/j.engfailanal.2008.10.013 CrossRefGoogle Scholar
  11. 11.
    M. Fonte, V. Infante, M. Freitas, L. Reis, Failure mode analysis of two diesel engine crankshafts. Procedia Struct. Integr. 1(5), 313–318 (2016).  https://doi.org/10.1016/j.prostr.2016.02.042 CrossRefGoogle Scholar
  12. 12.
    A. Ktari, N. Haddar, H.F. Ayedi, Fatigue fracture expertise of train engine crankshafts. Eng. Fail. Anal. 18(3), 1085–1093 (2011).  https://doi.org/10.1016/j.engfailanal.2011.02.007 CrossRefGoogle Scholar
  13. 13.
    Xuanyang Lei, Guicai Zhang, Song Xigeng, Jin Chen, Guangming Dong, Simulation on the motion of crankshaft with crack in crankpin-web fillet region. J. Sound Vib. 295(3–5), 890–905 (2006).  https://doi.org/10.1016/j.jsv.2006.01.044 CrossRefGoogle Scholar
  14. 14.
    Lucjan Witek, Michal Sikora, Feliks Stachowicz, Tomasz Trzepiecinski, Stress and failure analysis of the crankshaft of diesel engine. Eng. Fail. Anal. 82, 703–712 (2017).  https://doi.org/10.1016/j.engfailanal.2017.06.001 CrossRefGoogle Scholar
  15. 15.
    R. Branco, J.D. Costa, F.V. Antunes, Fatigue behavior and life prediction of lateral notched round bars under bending–torsion loading. Eng. Fract. Mech. 119, 66–84 (2014).  https://doi.org/10.1016/j.engfracmech.2014.02.009 CrossRefGoogle Scholar
  16. 16.
    Nao-Aki Noda, Takeshi Yamasaki, Katsunori Matsuo, Yasushi Takase, Interaction between fillet and crack in round and flat test specimens. Eng. Fract. Mech. 50(3), 385–405 (1995).  https://doi.org/10.1016/0013-7944(94)00187-M CrossRefGoogle Scholar
  17. 17.
    A. Freddi, G. Olmi, C. Luca, Experimental stress analysis for materials and structures, vol. 3 (Springer, Berlin, 2015).  https://doi.org/10.1007/978-3-319-06086-6 Google Scholar
  18. 18.
    M.M. Leven, Epoxy resins for photoelastic use, in Photoelasticity, ed. by M.M. Frocht (Pergamon Press Inc, New York, 1963)Google Scholar
  19. 19.
    M.M. Frocht, Photoelasticity (Pergamon Press Inc, New York, 1963)Google Scholar
  20. 20.
    P.A. Almeida Jr., C.A. Magalhães, A.L.M.A. Magalhães, Computational methods of phase shifting to stress measurement with photoelasticity using plane polariscope. Optik 130, 213–226 (2017).  https://doi.org/10.1016/j.ijleo.2016.11.037 CrossRefGoogle Scholar
  21. 21.
    Peter Frankovský, Oskar Ostertag, František Trebun, Eva Ostertagová, Andmichal Kelemen, Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity. Appl. Opt. 55(18), 4856–4864 (2016).  https://doi.org/10.1364/AO.55.004856 CrossRefGoogle Scholar
  22. 22.
    Peter Frankovský, Oskar Ostertag, Eva Ostertagová, František Trebunˇ, Ján Kostka, Marek Výrostek, Experimental analysis of stress fields of rotating structural elements by means of reflection photoelasticity. Appl. Opt. 56(11), 3064–3070 (2017).  https://doi.org/10.1364/AO.56.003064 CrossRefGoogle Scholar
  23. 23.
    Nao-Aki Noda, Yasushi Takase, Keiji Monda, Stress concentration factors for shoulder fillets in round and flat bars under various loads. Int. J. Fatigue 19(1), 75–84 (1997).  https://doi.org/10.1016/S0142-1123(97)82050-6 CrossRefGoogle Scholar
  24. 24.
    A.J. Muminovic, I. Saric, N. Repcic, Numerical Analysis of Stress Concentration Factors. Procedia Eng. 100, 707–713 (2015).  https://doi.org/10.1016/j.proeng.2015.01.423 CrossRefGoogle Scholar
  25. 25.
    Daniel Post, Photoelastic-fringe multiplication—for tenfold increase in sensitivity. Exp. Mech. 10(8), 305–312 (1970).  https://doi.org/10.1007/BF02320808 CrossRefGoogle Scholar
  26. 26.
    K. Barangi, V.B. Hubballi, A.L. Gogi, U.M. Daivagna, Design and stress analysis of crank shaft of four-stroke diesel engine using photo-elasticity and FEA. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 3(9), 255–262 (2015)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Riad Ahmad
    • 1
    Email author
  • Ahmad O. Hasan
    • 1
  • Hani Al-Rawashdeh
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringAl-Hussein Bin Talal UniversityMa’anJordan

Personalised recommendations