Advertisement

Journal of Failure Analysis and Prevention

, Volume 19, Issue 1, pp 177–181 | Cite as

Optimization of Laminates for Maximum Buckling Load

  • Abdelillah Feghoul
  • Abdelkader Lousdad
  • Abdelkader Megueni
  • Azzeddine BelazizEmail author
Technical Article---Peer-Reviewed
  • 23 Downloads

Abstract

Objective of this work is to optimize the structural configuration of laminates in terms of design for the maximization of buckling resistance of laminates under the effect of constraints. The predominant design parameter is the orientation of the fibers in the layers of the laminate. High-order deformation theory is used in the mathematical formulation in the buckling analysis of stratified composite plates. For this purpose, we will use the optimization technique genetic algorithm taking into account the various factors: number of fibers, geometric ratio, load ratio and boundary conditions.

Keywords

Optimization Laminate Fiber orientation buckling Loading Genetic algorithm (GA) 

References

  1. 1.
    P.E. Nicholas, K.P. Padmanaban, A.S. Sofia, Optimization of dispersed laminated composite plate for maximum safety factor using genetic algorithm and various failure criteria. Procedia Eng. 38, 1209–1217 (2012)CrossRefGoogle Scholar
  2. 2.
    C.M.M. Soares, C.A.M. Soares, V.M.F. Correia, Optimization of multilaminated structures using higher order deformation models comput methods. Appl. Mech. Eng. 52, 133–149 (1997)Google Scholar
  3. 3.
    S. Adali, A. Richter, V.E. Verijenko, Optimization of shear deformable laminated plates buckling and strength criteria. Compos. Struct. 39(3–4), 167–178 (1997)CrossRefGoogle Scholar
  4. 4.
    P.Y. Tabakov, M.A. Walker, Technique for optimally designing engineering structures with manufacturing tolerances accounted for. Eng. Optim. 39(1), 1–15 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Todoroki, R.T. Haftka, Stacking sequence optimization by a genetic algorithm with a new recessive gene like repair strategy. Compos. B 29, 277–285 (1998)CrossRefGoogle Scholar
  6. 6.
    S.T. Ijsselmuiden, M.M. Abdalla, Z. Gürdal, Implementation of strength-based failure criteria in the lamination parameter design space. AIAAJ 46, 1826–1834 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Herecia, R.T. Haftka, P. Weaver, M.I. Friswell, Lay-up: optimization of composite stiffened panels using linear approximations in lamination space. AIAAJ 46, 2387–2391 (2008)CrossRefGoogle Scholar
  8. 8.
    J.M. Berthelot, Matériaux Composites—Comportement Mécanique et Analyse des Structures, 2 edn. (Masson, Paris, 1996)Google Scholar
  9. 9.
    N.P. Emmanue, K.P. Padmanaban, A. Sathyasofia, Stacking sequence optimization of laminated composite plate using GA and ACO. Int. J. Technol. Res. Eng. 2(7), 2347–4718 (2015)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Abdelillah Feghoul
    • 1
  • Abdelkader Lousdad
    • 1
  • Abdelkader Megueni
    • 1
  • Azzeddine Belaziz
    • 2
    Email author
  1. 1.Laboratory of Mechanics of Structures and Solids (LMSS), Mechanical Engineering Department, Faculty of TechnologyUniversity of Sidi Bel AbbesSidi Bel AbbèsAlgeria
  2. 2.Laboratory of Materials and Reactive Systems (LMSR), Mechanical Engineering Department, Faculty of TechnologyUniversity of Sidi Bel AbbesSidi Bel AbbèsAlgeria

Personalised recommendations