Journal of Failure Analysis and Prevention

, Volume 19, Issue 1, pp 147–153 | Cite as

Finite Element Analysis of Delamination Behaviors of Composite Laminates under Hygrothermal Environment Using Virtual Crack Closure Technique

  • J. G. Li
  • P. F. LiuEmail author
  • J. K. Chu
Technical Article---Peer-Reviewed


This research aims to study the delamination behaviors of T700/8911 composite laminates under hygrothermal environment. For two mixed-mode I/II delamination specimens: single-leg bending delamination and over-leg bending delamination, finite element analysis using virtual crack closure technique as a ABAQUS module is comparatively performed to study the delamination growth and load responses, in which different delamination growth criteria are used. Mechanical tests and analytical solutions for two kinds of specimens are used to get the delamination fracture toughness. Results show that hygrothermal environment decreases the load-bearing ability and delamination resistance to some extent. This work provides a new thread for studying the delamination mechanisms of composite laminates under hygrothermal environment.


Delamination Hygrothermal environment Composite laminates Virtual crack closure technology (VCCT) Finite element analysis (FEA) 



Prof. Pengfei Liu would sincerely like to thank the National Key Fundamental Research and Development Project of China (No. 2015CB057603) and the National Natural Science Funding of China (No. 51875512).


  1. 1.
    E.F. Rybicki, M.F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9(4), 931–938 (1977)CrossRefGoogle Scholar
  2. 2.
    M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)CrossRefGoogle Scholar
  3. 3.
    E.M. Wu, R.C. Reuter, Crack extension in fiberglass reinforced plastics. Crack extension in fiberglass reinforced plastics (vol. 275). Illinois Univ Urbana Dept of Theoretical and Applied Mechanics (1965)Google Scholar
  4. 4.
    J. Reeder, S. Kyongchan, P.B. Chunchu, D.R. Ambur, Postbuckling and growth of delamination in composite plates subjected to axial compression, in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado (2002)Google Scholar
  5. 5.
    E.G. Wolff, Moisture effects on polymer matrix composites. SAMPE J. 29(3), 11–19 (1993)Google Scholar
  6. 6.
    M.L. Costa, Strength of hygrothermally conditioned polymer composites with voids. J. Compos. Mater. 39(21), 1943–1961 (2005)CrossRefGoogle Scholar
  7. 7.
    J.M. Zhou, J.P. Lucas, Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy. Polymer 40(20), 5505–5512 (1999)CrossRefGoogle Scholar
  8. 8.
    G.M. Cândido, M.L. Costa, M.C. Rezende, S.F.M. Almeida, Hygrothermal effects on quasi-isotropic carbon epoxy laminates with machined and molded edges. Compos. B Eng. 39(3), 490–496 (2008)CrossRefGoogle Scholar
  9. 9.
    S.K. Singh, A. Chakrabrti, Hygrothermal analysis of laminated composites using a C0FE model based on RHSDT. Inter. J. Earth Sci. Eng. 4(6), 604–607 (2011)Google Scholar
  10. 10.
    A. Ghosh, Hygrothermal effects on the initiation and propagation of damage in composite shells. Aircr. Eng. Aeros. Technol. 80(4), 386–399 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Sullivan, A thermodynamic model for hygrothermal behavior in polymer composites, in 35th Structures, Structural Dynamics, and Materials Conference (1993)Google Scholar
  12. 12.
    A. Bahrami, A. Nosier, Interlaminar hygrothermal stresses in laminated plates. Inter. J. Solids Struct. 44(25), 8119–8142 (2007)CrossRefGoogle Scholar
  13. 13.
    B.C. Ray, Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid Interf. Sci. 298(1), 111–117 (2006)CrossRefGoogle Scholar
  14. 14.
    L.R. Bao, A.F. Yee, Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites-part I: uni-weave composites. Compos. Sci. Technol. 62(16), 2099–2110 (2002)CrossRefGoogle Scholar
  15. 15.
    P.F. Liu, Z.P. Gu, Finite element analysis of single-leg bending delamination of composite laminates using a nonlinear cohesive model. J. Fail. Anal. Prev. 15(6), 1–7 (2015)CrossRefGoogle Scholar
  16. 16.
    P.F. Liu, J. Yang, B. Wang, Z.F. Zhou, J.Y. Zheng, A study on the intralaminar damage and interlaminar delamination of carbon fiber composite laminates under three-point bending using acoustic emission. J. Fail. Anal. Prev. 15(1), 101–121 (2015)CrossRefGoogle Scholar
  17. 17.
    S.H. Yoonn, C.S. Hong, Modified end notched flexure specimen for mixed mode interlaminar fracture in laminated composites. Inter. J. Fract. 43(1), 3–9 (1990)CrossRefGoogle Scholar
  18. 18.
    B.D. Davidson, V. Sundararaman, A single leg bending test for interfacial fracture toughness determination. Inter. J. Fract. 78(2), 193–210 (1996)CrossRefGoogle Scholar
  19. 19.
    A. Szekrenyes, J. Uj, Over-leg bending test for mixed-mode I/II interlaminar fracture in composite laminates. Inter. J. Damage Mech. 16(1), 5–33 (2007)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Institute of Chemical Machinery and Process Equipment, School of Energy EngineeringZhejiang UniversityHangzhouChina
  2. 2.Ocean College, Zhejiang UniversityZhoushanChina

Personalised recommendations