Advertisement

Journal of Failure Analysis and Prevention

, Volume 18, Issue 6, pp 1607–1615 | Cite as

Study of Creep–Fatigue Crack Growth Behavior in a Gas Turbine Casing

  • Esmaeil PoursaeidiEmail author
  • Amin Kavandi
  • Kaveh Torkashvand
Technical Article---Peer-Reviewed
  • 59 Downloads

Abstract

A creep–fatigue crack growth on the outer surfaces of a turbine casing was assessed, and the turbine casing’s overall lifetime was predicted. The crack location, size, and direction were determined using nondestructive tests. Temperature distribution, measured using thermography method, was applied as boundary conditions in FEM simulation. ABAQUS software was utilized for calculating the stress distribution of the casing in accordance with the real cycles of the turbine. Both the creep and the fatigue crack growths were predicted using the ZENCRACK code. The Paris equation was applied in order to estimate the fatigue life, and the time-dependent Paris equation was used to predict the creep life. It was shown that after a certain amount of time has passed, the crack stress intensity factor (K) and time-dependent stress intensity factor (Ct) decrease and stop in reaching the fatigue threshold stress intensity factor (Kth) and creep fracture mechanics parameter (C t * ) values, respectively.

Keywords

Creep Fatigue Crack growth Turbine casing Finite element analysis 

References

  1. 1.
    D.E. Brandt, R.R. Wesorick, GE gas turbine design philosophy, GE Power Generation Mark. No. GER-3434D (1994)Google Scholar
  2. 2.
    J.E. Gill, Uprate options for the MS900A heavy-duty gas turbine, GE Report, GER-3928A, p. 7 (1994)Google Scholar
  3. 3.
    Technical reports of ‘“Montazer Qa‘em’” power plant, no. 103, Iran (2005)Google Scholar
  4. 4.
    N.N. Tun, H.S. Yang, J.M. Yu, K.B. Yoon, Creep crack growth analysis using C t -parameter for internal circumferential and external axial surface cracks in a pressurized cylinder. J. Mech. Sci. Technol. 30, 5447–5458 (2016).  https://doi.org/10.1007/s12206-016-1113-6 CrossRefGoogle Scholar
  5. 5.
    E.M.K. Abad, G.H. Farrahi, M.M.K. Abad, A.A. Zare, S. Parsa, Failure analysis of a gas turbine compressor in a thermal power plant. J. Fail. Anal. Prev. 13, 313–319 (2013).  https://doi.org/10.1007/s11668-013-9663-8 CrossRefGoogle Scholar
  6. 6.
    T. Delph, Predicting the remaining life of high temperature steel piping. J. Fail. Anal. Prev. 8, 485–486 (2008).  https://doi.org/10.1007/s11668-008-9184-z CrossRefGoogle Scholar
  7. 7.
    B.D. Craig, Material failure modes, part I: a brief tutorial on fracture, ductile failure, elastic deformation, creep, and fatigue. J. Fail. Anal. Prev. 5, 9–16 (2005).  https://doi.org/10.1361/154770205X70732 CrossRefGoogle Scholar
  8. 8.
    S.E.M. Torshizi, A. Jahangiri, Analysis of Fatigue-Creep crack growth in the superheater header of a power plant boilers and estimation of its remaining lifetime. J. Fail. Anal. Prev. 18, 189–198 (2018).  https://doi.org/10.1007/s11668-018-0400-1 CrossRefGoogle Scholar
  9. 9.
    S. Kruch, P. Prigent, J.L. Chaboche, A fracture mechanics based fatigue-creep-environment crack growth model for high temperature. Int. J. Press. Vessel. Pip. 59, 141–148 (1994)CrossRefGoogle Scholar
  10. 10.
    I.S. Raju, J.C. Newman, Stress-intensity factors for internal and external surface cracks in cylindrical vessels. J. Press. Vessel Technol. 104, 293–298 (1982)CrossRefGoogle Scholar
  11. 11.
    C. Kanchanomai, W. Limtrakarn, Y. Mutoh, Fatigue crack growth behaviour in Sn–Pb eutectic solder/copper joint under mode I loading. Mech. Mater. 37, 1166–1174 (2005)CrossRefGoogle Scholar
  12. 12.
    D. Poquillon, M.-T. Cabrillat, A. Pineau, Local approach: numerical simulations of creep and creep–fatigue crack initiation and crack growth in 316L SPH austenitic stainless steel. Le J. Phys. IV. 6, C6–C421 (1996)Google Scholar
  13. 13.
    M. Salari, A.R. Shahani, H.M. Kashani, H. Moayeri Kashani, Fatigue crack growth analysis of a reinforced cylindrical shell under random loading. Fatigue Fract. Eng. Mater. Struct. 37, 1197–1210 (2014).  https://doi.org/10.1111/ffe.12196 CrossRefGoogle Scholar
  14. 14.
    T.H. Hyde, W. Sun, A.A. Becker, J.A. Williams, Creep properties and failure assessment of new and fully repaired P91 pipe welds at 923 K. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 218, 211–222 (2004)CrossRefGoogle Scholar
  15. 15.
    K.M. Nikbin, M. Yatomi, K. Wasmer, G.A. Webster, Probabilistic analysis of creep crack initiation and growth in pipe components. Int. J. Press. Vessel. Pip. 80, 585–595 (2003).  https://doi.org/10.1016/S0308-0161(03)00111-X CrossRefGoogle Scholar
  16. 16.
    M. Tan, N.J.C. Celard, K.M. Nikbin, G.A. Webster, Comparison of creep crack initiation and growth in four steels tested in HIDA. Int. J. Press. Vessel. Pip. 78, 737–747 (2001)CrossRefGoogle Scholar
  17. 17.
    K. Wasmer, K.M. Nikbin, G.A. Webster, A sensitivity study of creep crack growth in pipes, in Piping Conference, American Society of Mechanical Engineers (Press, Vessel, 2002), pp. 17–24Google Scholar
  18. 18.
    L.K. Bhagi, V. Rastogi, P. Gupta, Study of corrosive fatigue and life enhancement of low pressure steam turbine blade using friction dampers. J. Mech. Sci. Technol. 31, 17–27 (2017).  https://doi.org/10.1007/s12206-016-1203-5 CrossRefGoogle Scholar
  19. 19.
    M.P. Boyce, Gas Turbine Engineering Handbook (Elsevier, Amsterdam, 2011)Google Scholar
  20. 20.
  21. 21.
    https://www.matbase.com/material-categories/metals/ferrous-metals/cast-iron/ material-pro perties-of-ggg-40-din-1693-1-2-cast-iron-grade.html#properties (2014)
  22. 22.
    E. Poursaeidi, A. Kavandi, K. Vaezi, M.R. Kalbasi, M.R. Mohammadi Arhani, Fatigue crack growth prediction in a gas turbine casing. Eng. Fail. Anal. 44, 371–381 (2014).  https://doi.org/10.1016/j.engfailanal.2014.05.010 CrossRefGoogle Scholar
  23. 23.
    M. Janssen, J. Zuidema, R.J.H. Wanhill, Fracture mechanics VSSD (2006)Google Scholar
  24. 24.
    F.V. Antunes, R. Branco, P.A. Prates, L. Borrego, Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy. Fatigue Fract. Eng. Mater. Struct. (2017).  https://doi.org/10.1111/ffe.12582 CrossRefGoogle Scholar
  25. 25.
    Zentech Inc, ZENCRACK user manual, Zentech Incorporated (1999)Google Scholar
  26. 26.
    U.M. ABAQUS, Version 5.8, Hibbitt, Karlsson & Sorensen, Inc., USA (1998)Google Scholar
  27. 27.
    H.-Y. Lee, S.-H. Kim, J.-H. Lee, B.-H. Kim, Creep–fatigue crack growth behaviour of a structure with crack like defects at the welds. J. Mech. Sci. Technol. 20, 2136–2146 (2006)CrossRefGoogle Scholar
  28. 28.
    K.B. Yoon, A. Saxena, D.L. McDowell, Influence of crack-tip cyclic plasticity on creep–fatigue crack growth, in Fracture Mechanics Twenty-Second Symposium, pp. 367–392 (1990)Google Scholar
  29. 29.
    A. Saxena, Creep crack growth under non-steady-state conditions, in Fracture Mechanics Seventeenth Volume, ASTM International (1986)Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Esmaeil Poursaeidi
    • 1
    Email author
  • Amin Kavandi
    • 1
  • Kaveh Torkashvand
    • 1
  1. 1.Mechanical Engineering Department, Faculty of EngineeringUniversity of ZanjanZanjanIran

Personalised recommendations