Journal of Failure Analysis and Prevention

, Volume 18, Issue 6, pp 1573–1586 | Cite as

A Finite Element Analysis for Evaluation of J-Integral in Plates Made of Functionally Graded Materials with a Semicircular Notch

  • N. Bouida
  • A. S. BouchikhiEmail author
  • A. Megueni
  • S. Gouasmi
Technical Article---Peer-Reviewed


This work introduces a numerical investigation using finite element method to evaluate the J-integral at crack tip in titanium boride (TiB)–titanium (Ti) ceramic–metal functionally graded materials plate with a semicircular notch at side subjected to different mechanical load conditions (mode I and mixed mode). Young’s modulus of the functionally graded material plate varies along the specimen width (notch radius direction r-FGM) with power-law and exponential-law functions. Further, the Poisson’s ratio is taken as a constant in normal direction to the hole with a power-law function. The relation of J-integral with functionally graded material plate parameters (i.e., power-law index, thickness of plate) and geometrical parameters (i.e., normalized crack length, notch radius ratio) is highlighted; these parameters must be optimized in order to improve the performance. The obtained results show that it requires estimating the length of the crack, the plate thickness, the notch root radius, the variation in the material properties of the FGM plate constituents and the crack direction that they have a significant influence on the J-integral at the crack tip, and the controlled it can be significantly reduce the J-integral. It is noticed also that in the mixed mode the J-integral is more affected than in mode I.


FGM Crack J-integral Fracture mechanic Mode I Mixed mode Finite element methods 


  1. 1.
    A. Kawasaki, R. Watanabe, Thermal fracture behavior of metal/ceramic functionally graded materials. Eng. Fract. Mech. 69, 1713–1728 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, C. Compson, M. Liu, Nanostructured and functionally graded cathodes for intermediate solid oxide fuel cells. J. Power Sources 138, 194–198 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Nomura, H. Moriguchi, K. Tsuda, K. Isobe, A. Ikegaya, K. Moriyama, Material design method for the functionally graded cemented carbide tool. Int. J. Refract. Metals Hard Mater. 17, 397–404 (1999)CrossRefGoogle Scholar
  4. 4.
    F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, T. Kawasaki, Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64, 893–908 (2004)CrossRefGoogle Scholar
  5. 5.
    J.R. Rice, Path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)CrossRefGoogle Scholar
  6. 6.
    R.M. McMeeking, Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture. J. Mech. Phys. Solids 25, 357–381 (1977)CrossRefGoogle Scholar
  7. 7.
    D. Carka, C.M. Landis, On the path-dependence of the J-integral near a stationary crack in an elastic–plastic material. J. Appl. Mech. 78(1–6), 011006 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Liebowitz, J.S. Sandhu, J.D. Lee, F.C.M. Menandro, Computational fracture mechanics: research and application. Eng. Fract. Mech. 50, 653–670 (1995)CrossRefGoogle Scholar
  9. 9.
    K.B. Broberg, Critical review of some method in nonlinear fracture mechanics. Eng. Fract. Mech. 50, 157–164 (1995)CrossRefGoogle Scholar
  10. 10.
    R. Firmature, S. Rahman, Elastic–plastic analysis of off-center cracks in cylindrical structures. Eng. Fract. Mech. 66, 15–39 (2000)CrossRefGoogle Scholar
  11. 11.
    P.A. Allen, D.N. Wells, Interpolation methodology for elastic–plastic J-integral solutions for surface cracked plates in tension. Eng. Fract. Mech. 119, 173–201 (2014)CrossRefGoogle Scholar
  12. 12.
    D.H. Cho, H.B. Seo, Y.J. Kim, Y.S. Chang, M.J. Jhung, Y.H. Choi, Advances in J-integral estimation of circumferentially surface cracked pipes. Fatigue Fract. Eng. Mater. Struct. 34, 667–681 (2011)CrossRefGoogle Scholar
  13. 13.
    O. Pop, F. Dubois, J. Absi, J-integral evaluation in cracked wood specimen using the mark tracking method. Wood Sci. Technol. 47, 257–267 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Kikuchi, H. Miyamoto, K. Machida, Y. Kitagawa, K. Chiba, On the 3 dimensional J integral: 2nd report, the J integral of the CT specimen in elastic–plastic state. Jpn. Soc. Mech. Eng. Ser. A 50(456), 1524–1530 (1984)CrossRefGoogle Scholar
  15. 15.
    M. Kikuchi, H. Miyamoto, M. Tanaka, J integral evaluation of CT specimen in elastic–plastic state. Bull. JSME Jpn. Soc. Mech. Eng. 27(233), 2365–2371 (1984)CrossRefGoogle Scholar
  16. 16.
    T.K. Hellen, On the method of virtual crack extensions. Int. J. Numer. Methods Eng. 9, 187–207 (1975)CrossRefGoogle Scholar
  17. 17.
    D.M. Parks, The virtual crack extension method for nonlinear material behavior. Comput. Methods Appl. Mech. Eng. 12, 353–364 (1977)CrossRefGoogle Scholar
  18. 18.
    L. Banks-Sills, R. Kopelman, On the computation of stress intensity factors for three-dimensional geometries with singular, twenty-seven-noded, distorted elements. Comput. Struct. 41(5), 981–986 (1991)CrossRefGoogle Scholar
  19. 19.
    P.W. Claydon, Maximum energy release rate distribution from a generalized 3D virtual crack extension method. Eng. Fract. Mech. 42, 961–969 (1992)CrossRefGoogle Scholar
  20. 20.
    F.Z. Li, C.F. Shih, A. Needleman, A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405–421 (1985)CrossRefGoogle Scholar
  21. 21.
    C.F. Shih, B. Moran, T. Nakamura, Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79–102 (1986)Google Scholar
  22. 22.
    G.P. Nikishkov, S.N. Atluri, An equivalent domain integral method for computing crack-tip integral parameters in non-elastic, thermo-mechanical fracture. Eng. Fract. Mech. 26, 851–867 (1987)CrossRefGoogle Scholar
  23. 23.
    G.P. Nikishkov, S.N. Atluri, Three-dimensional elastic–plastic J-integral calculations for semielliptical surface cracks in a tensile plate. Eng. Fract. Mech. 29, 81–87 (1988)CrossRefGoogle Scholar
  24. 24.
    K.M. Shivakumar, I.S. Raju, An equivalent domain integral method for three-dimensional mixed-mode fracture problems. Eng. Fract. Mech. 42, 935–959 (1992)CrossRefGoogle Scholar
  25. 25.
    T. Nishioka, F. Stan, T. Fujimoto, Dynamic J integral and dynamic stress intensity factor distributions along naturally and dynamically propagating three dimensional fracture fronts. JSME Int. J. Ser. A 45(2), 523–537 (2002)CrossRefGoogle Scholar
  26. 26.
    T. Nishioka, F. Stan, A hybrid experimental-numerical study on the mechanics of three-dimensional dynamic fracture. CMES Comput. Model. Eng. Sci. 4, 119–139 (2003)Google Scholar
  27. 27.
    N. Sukmar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng. Fract. Mech. 70, 29–48 (2003)CrossRefGoogle Scholar
  28. 28.
    G. Legrain, N. Moës, E. Verron, Stress analysis around crack tips in finite strain problems using the eXtended finite element method. Int. J. Numer. Methods Eng. 63, 290–314 (2005)CrossRefGoogle Scholar
  29. 29.
    F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. ASME J. Appl. Mech. 50, 609–614 (1983)CrossRefGoogle Scholar
  30. 30.
    G. Bao, L. Wang, Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 32, 2853–2871 (1995)CrossRefGoogle Scholar
  31. 31.
    ABAQUS Finite element program, ABAQUS/Standard 6.9.1. Hibbit, Karlsson and Sorensen, Inc. Pawtuket, USA, 2008Google Scholar
  32. 32.
    S. Gouasmi, A. Megueni, A.S. Bouchikhi, K. Zouggar, A. Sahli, On the reduction of stress concentration factor around a notch using a functionally graded layer. Mater. Res. 18(5), 971–977 (2015)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • N. Bouida
    • 1
    • 2
  • A. S. Bouchikhi
    • 1
    • 2
    Email author
  • A. Megueni
    • 1
    • 2
  • S. Gouasmi
    • 1
    • 2
  1. 1.Faculty of TechnologyUniversity of Sidi Bel AbbèsSidi Bel AbbesAlgeria
  2. 2.Laboratory of Structures and Solids Mechanics – LMSS, Faculty of TechnologyUniversity of Sidi Bel AbbèsSidi Bel AbbesAlgeria

Personalised recommendations