Advertisement

Journal of Failure Analysis and Prevention

, Volume 18, Issue 6, pp 1526–1533 | Cite as

Failure Analysis of (± 55°)9 Filament-Wound GRE Pipes Using Explicit Finite Element Method: A Comparison with the Experimental Method

  • Hamidreza Mahdavi
  • Gholam Hossein RahimiEmail author
  • Amin Farrokhabadi
Technical Article---Peer-Reviewed
  • 60 Downloads

Abstract

In the present study, the progressive failure analysis of an industrial (± 55°)9 filament-wound glass fiber reinforced epoxy (GRE) pipe is performed to determine its ultimate hoop strength. In practice, according to ASTM D-2290 standard, performing the tests on the rings cut from the pipe is a method for determining its ultimate hoop strength. Hence, in this paper, the finite element modeling concentrates on the ring cut from the pipe instead of the entire pipe. A VUSDFLD subroutine in the ABAQUS software based on the Hashin failure criteria along with the sudden material property degradation rules is used to identify the mode of failure. The numerical convergence problem including the selection of an appropriate time period and mesh size is studied. The predicted ultimate hoop strength of the pipe using finite element analysis is also compared with that by the experiment.

Keywords

GRE pipe Ring Ultimate hoop strength Hashin failure criteria ABAQUS software 

References

  1. 1.
    M. Martens, F. Ellyin, Biaxial monotonic behavior of a multidirectional glass fiber epoxy pipe. Compos. Part A 16, 1001–1014 (2000)CrossRefGoogle Scholar
  2. 2.
    D. Cohen, Influence of filament winding parameters on composite vessel quality and strength. Compos. Part A 28, 1035–1047 (1997)CrossRefGoogle Scholar
  3. 3.
    J. Rousseau, D. Perreux, N. Verdiere, The influence of winding patterns on the damage behaviour of filament-wound pipes. Compos. Sci. Technol. 59, 1439–1449 (1999)CrossRefGoogle Scholar
  4. 4.
    D. Cohen, S.C. Mantell, L. Zhao, The effect of fiber volume fraction on filament-wound composite pressure vessel strength. Compos. B Eng. 32, 413–429 (2001)CrossRefGoogle Scholar
  5. 5.
    M. Xia, H. Takayanagi, K. Kemmochi, Analysis of multi-layered filament-wound composite pipes under internal pressure. Compos. Struct. 53, 483–491 (2001)CrossRefGoogle Scholar
  6. 6.
    N. Tarakcioglu, A. Akdemir, A. Avci, Strength of filament wound GRP pipes with surface crack. Compos. B Eng. 32, 131–138 (2001)CrossRefGoogle Scholar
  7. 7.
    P. Mertiny, F. Ellyin, Influence of the filament winding tension on physical and mechanical properties of reinforced composites. Compos. Part A 33, 1615–1622 (2002)CrossRefGoogle Scholar
  8. 8.
    T.K. Hwang, C.S. Hong, C.G. Kim, Size effect on the fiber strength of composite pressure vessels. Compos. Struct. 59, 489–498 (2003)CrossRefGoogle Scholar
  9. 9.
    E. Baranger, O. Allix, L. Blanchard, A computational strategy for the analysis of damage in composite pipes. Compos. Sci. Technol. 69, 88–92 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Faria, R.M. Guedes, Long-term behaviour of GFRP pipes: reducing the prediction test duration. Polym. Test. 29, 337–345 (2010)CrossRefGoogle Scholar
  11. 11.
    J.D.Z. Melo, F.L. Neto, G. de Araujo Barros, F.N. de Almeida Mesquita, Mechanical behavior of GRP pressure pipes with addition of quartz sand filler. J. Compos. Mater. 45(6), 717–726 (2010)CrossRefGoogle Scholar
  12. 12.
    L.A.L. Martins, F.L. Bastian, T.A. Netto, Structural and functional failure pressure of filament wound composite tubes. Mater. Des. 36(4), 779–787 (2012)CrossRefGoogle Scholar
  13. 13.
    L.A.L. Martins, F.L. Bastian, T.A. Netto, The effect of stress ratio on the fracture morphology of filament wound composite tubes. Mater. Des. 49(8), 471–484 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Rafiee, Experimental and theoretical investigations on the failure of filament-wound GRP pipes. Compos. B Eng. 45, 257–267 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Perillo, R. Vacher, F. Grytten, S. Sørbø, Material characterisation and failure envelope evaluation of filament wound GFRP and CFRP composite tubes. Polym. Test. 40, 54–62 (2014)CrossRefGoogle Scholar
  16. 16.
    Q. Wu, X. Chen, Z. Fan, Y. Jiang, D. Nie, Experimental and numerical studies of impact on filament-wound composite cylinder. Acta Mech. Solida Sin. 30(5), 540–549 (2017)CrossRefGoogle Scholar
  17. 17.
    Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disk Method. ASTM D-2290-04, West Conshohocken, PA: ASTM InternationalGoogle Scholar
  18. 18.
    V.A. Passipoularidis, T.P. Philippidis, P. Brondsted, Fatigue life prediction in composites using progressive damage modeling under block and spectrum loading. Int. J. Fatigue 33, 132–144 (2011)CrossRefGoogle Scholar
  19. 19.
    Abaqus software, Analysis User’s Manual, Analysis Procedures, Solution, and Control, Chapter 6, Analysis Procedures, 6.3.3: Explicit Dynamic Analysis, Version 6.12, 2012Google Scholar
  20. 20.
    Z. Hashin, A. Rotem, A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)CrossRefGoogle Scholar
  21. 21.
    H.R. Mahdavi, G.H. Rahimi, A. Farrokhabadi, Failure analysis of (± 55°)9 filament-wound GRE pipes using acoustic emission technique. Eng. Fail. Anal. 62, 178–187 (2016)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Hamidreza Mahdavi
    • 1
  • Gholam Hossein Rahimi
    • 1
    Email author
  • Amin Farrokhabadi
    • 1
  1. 1.Department Of Mechanical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations