Journal of Failure Analysis and Prevention

, Volume 18, Issue 6, pp 1484–1489

# A Novel Method to Predict the Low-Cycle Fatigue Life

• Lihong Huang
• Huan Sheng Lai
• Kang Lin Liu
Technical Article---Peer-Reviewed

## Abstract

Since fatigue failure commonly occurs in mechanical equipment, the prediction of the fatigue life is important to ensure safety in the running cycle of production. In this paper, a method is proposed to predict the low-cycle fatigue life. The accuracy of the proposed method is compared to the strain energy criterion and Coffin–Manson/Basquin equation with three different materials. The results indicate that accuracy of the proposed method is similar to the strain energy criterion and Coffin–Manson/Basquin equation in predicting the low-cycle fatigue life.

## Keywords

Fatigue life prediction Low-cycle fatigue Strain energy criterion Coffin–Manson/Basquin equation

## List of Symbols

b

Fatigue strength exponent

C

Material constant

E

Young’s modulus

$$K^{\prime }$$

Cyclic strain hardening coefficient

$$n^{\prime }$$

Cyclic strain hardening exponent

$$N_{\text{f}}$$

Number of fatigue failure cycles

m

Material constant

R2

Determination coefficient of a fitted curve

$$R_{\varepsilon }$$

Strain ratio

$$\Delta W$$

Strain energy density

$$\Delta W_{\text{p}}$$

Plastic strain energy density

$$\Delta W_{\text{S}}$$

Complementary energy density parameter

$$\Delta W_{\text{t}}$$

Total strain energy density

$$\Delta \varepsilon_{\text{e}} /2$$

Elastic strain amplitude

$$\Delta \varepsilon_{\text{p}} /2$$

Plastic strain amplitude

$$\Delta \varepsilon_{\text{t}} /2$$

Total strain amplitude

$$\Delta \sigma /2$$

Stress amplitude

$$\sigma_{\text{f}}^{\prime }$$

Fatigue strength coefficient

## Notes

### Acknowledgments

This work was supported by the Qishan Scholars Program of Fuzhou University (XRC-1689), National Natural Science Foundation Project of China (51705078), and Education Research Project for Young Teachers of Fujian Province (JAT170075 and JAT170850).

## References

1. 1.
O.H. Basquin, The exponential law of endurance tests. Am. Soc. Test. Mater. Proc. 10, 625–630 (1910)Google Scholar
2. 2.
S.S. Manson. Behavior of materials under conditions of thermal stress. National Advisory Committee for Aeronautics, NACA TN-2933 (1953)Google Scholar
3. 3.
L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931–950 (1954)Google Scholar
4. 4.
N.P. Inglis. Hysteresis and fatigue of Wöhler rotating cantilever specimen. Metallurgist 3, 23–27 (1927)Google Scholar
5. 5.
G.R. Halford, The energy required for fatigue. J. Mater. 1(1), 3–18 (1966)Google Scholar
6. 6.
S.H. Park, S. Hong, B.H. Lee, W. Bang, C.S. Lee, Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy. Int. J. Fatigue 32, 1835–1842 (2010)
7. 7.
E. Macha, C.M. Sonsino, Energy criteria of multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 22, 1053–1070 (1999)
8. 8.
A. Varani-Farahani, A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions. Int. J. Fatigue 22, 295–305 (2000)
9. 9.
H. Jaed, A. Varani-Farahani, M. Noban, I. Khalaji, An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions. Int. J. Fatigue 29, 647–655 (2007)
10. 10.
S.G.S. Raman, K.A. Padmanabhan, A comparison of the room-temperature behavior of AISI 304LN stainless steel and Nimonic 90 under strain cycling. Int. J. Fatigue 17(4), 271–277 (1995)
11. 11.
T. Łagoda, C.M. Sonsino, P. Ogonowski, Application of the strain energy density parameter for estimation of multiaxial fatigue life of sintered steels with stress concentrators. J Theor. Appl. Mech. 47, 161–175 (2009)Google Scholar
12. 12.
K.C. Liu, J.A. Wang, An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading conditions. Int. J. Fatigue 23, 129–134 (2001)
13. 13.
D. Skibicki, Ł. Pejkowski, Low-cycle multiaxial fatigue behavior and fatigue life prediction for CuZn37 brass using the stress-strain models. Int. J. Fagitue 102, 18–36 (2017)
14. 14.
P.P. Sarkar, P.S. De, S.K. Dhua, P.C. Chakraborti, Strain energy based low cycle fatigue damage analysis in a plain C-Mn rail steel. Mater. Sci. Eng. A 707, 125–135 (2017)
15. 15.
A. Carpinteri, M. Kurek, T. Łagoda, S. Vantadori, Estimation of fatigue life under multiaxial loading by varying the critical plane orientation. Int. J. Fatigue 100, 512–520 (2017)
16. 16.
B. Bhattacharya, B. Ellingwood, Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20(9), 631–639 (1998)
17. 17.
D.G. Shang, W.X. Yao, A nonlinear damage cumulative model for uniaxial fatigue. Int. J. Fatigue 21, 187–194 (1999)
18. 18.
R. Beesley, H. Chen, M. Hughes, A novel simulation for the design of a low cycle fatigue experimental testing programme. Comput. Struct. 178, 105–118 (2017)
19. 19.
R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1976)Google Scholar
20. 20.
F. Ellyin, Fatigue Damage Crack Growth and Life Prediction (Springer, Berlin, 1996)
21. 21.
Z. Li, H. Zou, J. Dai, X. Feng, M. Sun, L. Peng, A comparison of low-cycle fatigue behavior between the solutionized and aged Mg-3Nd-0.2Zn-0.5Zr alloys. Mater. Sci. Eng. A 695, 342–349 (2017)
22. 22.
H. Li, F. Lv, Z. Xiao, X. Liang, F. Sang, P. Li, Low-cycle fatigue behavior of a cast Mg-Y-Nd-Zr alloy by T6 heat treatment. Mater. Sci. Eng. A 676, 377–384 (2016)
23. 23.
J.W. Sowards, E.A. Pfeif, M.J. Connolly, J.D. McColskey, S.L. Miller, B.J. Simonds, J.R. Fekete, Low-cycle fatigue behavior of fiber-laser welded, corrosion-resistant high-strength low alloy sheet steel. Mater. Des. 121, 393–405 (2017)

## Authors and Affiliations

1. 1.School of Chemical Engineering, Fuzhou UniversityFuzhouChina
2. 2.Fuzhou University Zhicheng CollegeFuzhouChina