Journal of Failure Analysis and Prevention

, Volume 18, Issue 6, pp 1484–1489 | Cite as

A Novel Method to Predict the Low-Cycle Fatigue Life

  • Lihong Huang
  • Huan Sheng LaiEmail author
  • Kang Lin Liu
Technical Article---Peer-Reviewed


Since fatigue failure commonly occurs in mechanical equipment, the prediction of the fatigue life is important to ensure safety in the running cycle of production. In this paper, a method is proposed to predict the low-cycle fatigue life. The accuracy of the proposed method is compared to the strain energy criterion and Coffin–Manson/Basquin equation with three different materials. The results indicate that accuracy of the proposed method is similar to the strain energy criterion and Coffin–Manson/Basquin equation in predicting the low-cycle fatigue life.


Fatigue life prediction Low-cycle fatigue Strain energy criterion Coffin–Manson/Basquin equation 

List of Symbols


Fatigue strength exponent


Material constant


Young’s modulus

\(K^{\prime }\)

Cyclic strain hardening coefficient

\(n^{\prime }\)

Cyclic strain hardening exponent


Number of fatigue failure cycles


Material constant


Determination coefficient of a fitted curve

\(R_{\varepsilon }\)

Strain ratio

\(\Delta W\)

Strain energy density

\(\Delta W_{\text{p}}\)

Plastic strain energy density

\(\Delta W_{\text{S}}\)

Complementary energy density parameter

\(\Delta W_{\text{t}}\)

Total strain energy density

\(\Delta \varepsilon_{\text{e}} /2\)

Elastic strain amplitude

\(\Delta \varepsilon_{\text{p}} /2\)

Plastic strain amplitude

\(\Delta \varepsilon_{\text{t}} /2\)

Total strain amplitude

\(\Delta \sigma /2\)

Stress amplitude

\(\sigma_{\text{f}}^{\prime }\)

Fatigue strength coefficient



This work was supported by the Qishan Scholars Program of Fuzhou University (XRC-1689), National Natural Science Foundation Project of China (51705078), and Education Research Project for Young Teachers of Fujian Province (JAT170075 and JAT170850).


  1. 1.
    O.H. Basquin, The exponential law of endurance tests. Am. Soc. Test. Mater. Proc. 10, 625–630 (1910)Google Scholar
  2. 2.
    S.S. Manson. Behavior of materials under conditions of thermal stress. National Advisory Committee for Aeronautics, NACA TN-2933 (1953)Google Scholar
  3. 3.
    L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931–950 (1954)Google Scholar
  4. 4.
    N.P. Inglis. Hysteresis and fatigue of Wöhler rotating cantilever specimen. Metallurgist 3, 23–27 (1927)Google Scholar
  5. 5.
    G.R. Halford, The energy required for fatigue. J. Mater. 1(1), 3–18 (1966)Google Scholar
  6. 6.
    S.H. Park, S. Hong, B.H. Lee, W. Bang, C.S. Lee, Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy. Int. J. Fatigue 32, 1835–1842 (2010)CrossRefGoogle Scholar
  7. 7.
    E. Macha, C.M. Sonsino, Energy criteria of multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 22, 1053–1070 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Varani-Farahani, A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions. Int. J. Fatigue 22, 295–305 (2000)CrossRefGoogle Scholar
  9. 9.
    H. Jaed, A. Varani-Farahani, M. Noban, I. Khalaji, An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions. Int. J. Fatigue 29, 647–655 (2007)CrossRefGoogle Scholar
  10. 10.
    S.G.S. Raman, K.A. Padmanabhan, A comparison of the room-temperature behavior of AISI 304LN stainless steel and Nimonic 90 under strain cycling. Int. J. Fatigue 17(4), 271–277 (1995)CrossRefGoogle Scholar
  11. 11.
    T. Łagoda, C.M. Sonsino, P. Ogonowski, Application of the strain energy density parameter for estimation of multiaxial fatigue life of sintered steels with stress concentrators. J Theor. Appl. Mech. 47, 161–175 (2009)Google Scholar
  12. 12.
    K.C. Liu, J.A. Wang, An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading conditions. Int. J. Fatigue 23, 129–134 (2001)CrossRefGoogle Scholar
  13. 13.
    D. Skibicki, Ł. Pejkowski, Low-cycle multiaxial fatigue behavior and fatigue life prediction for CuZn37 brass using the stress-strain models. Int. J. Fagitue 102, 18–36 (2017)CrossRefGoogle Scholar
  14. 14.
    P.P. Sarkar, P.S. De, S.K. Dhua, P.C. Chakraborti, Strain energy based low cycle fatigue damage analysis in a plain C-Mn rail steel. Mater. Sci. Eng. A 707, 125–135 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Carpinteri, M. Kurek, T. Łagoda, S. Vantadori, Estimation of fatigue life under multiaxial loading by varying the critical plane orientation. Int. J. Fatigue 100, 512–520 (2017)CrossRefGoogle Scholar
  16. 16.
    B. Bhattacharya, B. Ellingwood, Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20(9), 631–639 (1998)CrossRefGoogle Scholar
  17. 17.
    D.G. Shang, W.X. Yao, A nonlinear damage cumulative model for uniaxial fatigue. Int. J. Fatigue 21, 187–194 (1999)CrossRefGoogle Scholar
  18. 18.
    R. Beesley, H. Chen, M. Hughes, A novel simulation for the design of a low cycle fatigue experimental testing programme. Comput. Struct. 178, 105–118 (2017)CrossRefGoogle Scholar
  19. 19.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1976)Google Scholar
  20. 20.
    F. Ellyin, Fatigue Damage Crack Growth and Life Prediction (Springer, Berlin, 1996)CrossRefGoogle Scholar
  21. 21.
    Z. Li, H. Zou, J. Dai, X. Feng, M. Sun, L. Peng, A comparison of low-cycle fatigue behavior between the solutionized and aged Mg-3Nd-0.2Zn-0.5Zr alloys. Mater. Sci. Eng. A 695, 342–349 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Li, F. Lv, Z. Xiao, X. Liang, F. Sang, P. Li, Low-cycle fatigue behavior of a cast Mg-Y-Nd-Zr alloy by T6 heat treatment. Mater. Sci. Eng. A 676, 377–384 (2016)CrossRefGoogle Scholar
  23. 23.
    J.W. Sowards, E.A. Pfeif, M.J. Connolly, J.D. McColskey, S.L. Miller, B.J. Simonds, J.R. Fekete, Low-cycle fatigue behavior of fiber-laser welded, corrosion-resistant high-strength low alloy sheet steel. Mater. Des. 121, 393–405 (2017)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering, Fuzhou UniversityFuzhouChina
  2. 2.Fuzhou University Zhicheng CollegeFuzhouChina

Personalised recommendations