Journal of Failure Analysis and Prevention

, Volume 18, Issue 6, pp 1472–1483 | Cite as

Analysis of the Young’s Modulus and Impact Strength of A-Glass/Epoxy/Nano-silica Ternary Nano-composites Using Surface Response Methodology

  • Mohammad Sadegh Bagheri
  • Faramarz Ashenai GhasemiEmail author
  • Ismail Ghasemi
  • Mohammad Hossein Saberian
Technical Article---Peer-Reviewed


The goal of this study was to investigate the effect of the simultaneous presence of A-glass fibers and nano-silica on an epoxy matrix using the response surface methodology (RSM). The Box–Behnken method was used to design experiments to determine the main and interaction effect between variables including glass fibers (GF), glass fibers length (GFL) and nano-silica (NS) in three levels (5, 10 and 15 wt.% for GF; 3, 6 and 9 mm for GFL; and 0, 0.75 and 1.5 wt.% for NS). The RSM provides a model for each response with high confident. Moreover, RSM models were used to predict the optimal case for the maximum Young’s modulus and impact strength. The optimal case was estimated to be 15 wt.% for GF at 5.9697 mm length and 0.8182 wt.% for NS. Experimental tests showed an agreement with the predicted values. Further, scanning electron microscopy was used to evaluate the morphology of the samples. It was found that the length of the glass fiber and nanoparticles had the most effect on the Young’s modulus and impact strength, respectively.


Nano-composite A-glass epoxy Mechanical properties Response surface methodology 


  1. 1.
    M. Naffakh, A.M.D. Pascual, C. Marco, G.J. Ellis, Fatou MAG., Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Prog. Polym. Sci. 38(8), 1163–1231 (2013)CrossRefGoogle Scholar
  2. 2.
    M.H. Wichmann, J. Sumfleth, F.H. Gojny, M. Quaresimin, B. Fiedler, K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties-benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73(16), 2346–2359 (2006)CrossRefGoogle Scholar
  3. 3.
    B.M. Novak, Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv. Mater. 5(6), 422–433 (1993)CrossRefGoogle Scholar
  4. 4.
    S. Daneshpayeh, F.A. Ghasemi, I. Ghasemi, M. Ayaz, Predicting of mechanical properties of PP/LLDPE/TiO2 nano-composites by response surface methodology. Compos. Part B Eng. 84, 109–120 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Jumahat, C. Soutis, S.A. Abdullah, S. Kasolang, Tensile properties of nanosilica/epoxy nanocomposites. Procedia Eng. 41, 1634–1640 (2012)CrossRefGoogle Scholar
  6. 6.
    M.H. Pol, G.H. Liaghat, E.M. Yeganeh, A. Afrouzian, Experimental investigation of nanoclay and nanosilica particles effects on mechanical properties of glass epoxy composites. Modares Mech. Eng. 14 (16) (2015) (in Persian) Google Scholar
  7. 7.
    A. Allahverdi, M. Ehsani, H. Janpour, S. Ahmadi, The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating. Prog. Org. Coat. 75(4), 543–548 (2012)CrossRefGoogle Scholar
  8. 8.
    T.D. Pham, C.M. Vu, H.J. Choi, Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica. Polym. Sci. Ser. A Polym. Phys. 59(3), 437–444 (2017)CrossRefGoogle Scholar
  9. 9.
    M.S. Islam, R. Masoodi, H. Rostami, The effect of nanoparticles percentage on mechanical behavior of silica-epoxy nanocomposites. J. Nano sci. (2013). CrossRefGoogle Scholar
  10. 10.
    C. Chen, R.S. Justice, D.W. Schaefer, J.W. Baur, Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties. Polym. 49(17), 3805–3815 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu, F. Chen, Q. Fu, Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl. Mater. Interfaces 4(8), 4398–4404 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Zhang, Z. Zhang, K. Friedrich, C. Eger, Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54(7), 1833–1842 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Conradi, M. Zorko, A. Kocijan, I. Verpoest, Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers. Mater. Chem. Phys. 137(3), 910–915 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Halder, S. Ahemad, S. Das, J. Wang, Epoxy/glass fiber laminated composites integrated with amino functionalized ZrO2 for advanced structural applications. ACS Appl. Mater. Interfaces 8(3), 1695–1706 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Matei, M. Stoicanescu, A. Crisan, Composites with short fibers reinforced epoxy resin matrix. Procedia Technol. 22, 174–181 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Fereshteh-Saniee, G.H. Majzoobi, M. Bahrami, An experimental study on the behavior of glass-epoxy composite at low strain rates. J. Mater. Process. Technol. 162, 39–45 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Rotem, J.M. Lifshitz, Longitudinal strength of unidirectional fibrous composite under high rate of loading, in Proceedings of the 26th annual technical conferenceSociety Plastics Industry Reinforced Plastics, Composites Division, Washington, DC, Section, 1971, pp. 1–10Google Scholar
  18. 18.
    M.F. Uddin, C.T. Sun, Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7–8), 1637–1643 (2008)CrossRefGoogle Scholar
  19. 19.
    Y.K. Yang, M.T. Chuang, S.S. Lin, Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. J. Mater. Process. Technol. 209(9), 4395–4400 (2009)CrossRefGoogle Scholar
  20. 20.
    F.A. Ghasemi, S. Daneshpayeh, I. Ghasemi, M. Ayaz, An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology. Polym. Bull. 73(6), 1741–1760 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Noroozi, M. Ayaz, N.M. Arab, D.M. Khaki, Response surface methodology to predict the mechanical properties of hot-rolled sheets. Revue de Métallurgie 110(5), 359–371 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Athijayamani, R. Ganesamoorthy, K.T. Loganathan, S. Sidhardhan, Modelling and analysis of the mechanical properties of agave sisalana variegata fibre/vinyl ester composites using Box-Behnken design of response surface methodology. Strojniški vestnik 62(5), 273–280 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Peasura, Application of response surface methodology for modeling of Postweld heat treatment process in a pressure vessel steel ASTM A516 grade 70. Sci. World J. (2015). CrossRefGoogle Scholar
  24. 24.
    J.P. Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Response surface modeling and analysis of barrier and optical properties of maize starch edible films. Int. J. Biol. Macromol. 60, 412–421 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Manohar, J. Joseph, T. Selvaraj, D. Sivakumar, Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. Int. J. Sci. Eng. Res. 4(4), 620–644 (2013)Google Scholar
  26. 26.
    Douglas C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 2001)Google Scholar
  27. 27.
    G. Box, J. Hunter, W. Hunter, Statistics for Experimenters, Design, Innovation and Discovery (Wiley, New York, 2005)Google Scholar
  28. 28.
    N.A. Rahman, A. Hassan, R. Yahya, R.A. Lafia-Araga, Impact properties of glass-fiber/polypropylene composites: the influence of fiber loading, specimen geometry and test temperature. Fibers. Polym. 14(11), 1877–1885 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Chaharmahali, Y. Hamzeh, G. Ebrahimi, A. Ashori, I. Ghasemi, Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym. Bull. 71(2), 337–349 (2014)CrossRefGoogle Scholar
  30. 30.
    N.A. Rahman, A. Hassan, R. Yahya, R.A. Lafia-Araga, P.R. Hornsby, Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. J. Reinf. Plast. Compos. 31(4), 269–281 (2012)CrossRefGoogle Scholar
  31. 31.
    S.A. Hoseini, M.H. Pol, Investigation of the tensile and the flexural properties of the glass/epoxy composites reinforced with nanoclay particles. Modares Mech. Eng. 14(7), 103–108 (2014). (In Persian) Google Scholar
  32. 32.
    M. Quaresimin, K. Schulte, M. Zappalorto, S. Chandrasekaran, Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Compos. Sci. Technol. 123, 187–204 (2016)CrossRefGoogle Scholar
  33. 33.
    J.L. Toupe, A. Trokourey, D. Rodrigue, Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: phase compatibilization and quality/cost ratio. Polym. Compos. 35(4), 730–746 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Aly, M.S. Hashmi, A.G. Olabi, K.Y. Benyounis, M. Messeiry, A.I. Hussain, E.F. Abadir, Optimization of alkaline treatment conditions of flax fiber using Box-Behnken method. J. Nat. Fibers 9(4), 256–276 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai, J. Sankar, Synthesis and characterization of Ag-TiO2-CNT nanoparticle composites with high photocatalytic activity under artificial light. Compos. Part B Eng. 57, 105–111 (2014)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Mohammad Sadegh Bagheri
    • 1
  • Faramarz Ashenai Ghasemi
    • 1
    Email author
  • Ismail Ghasemi
    • 2
  • Mohammad Hossein Saberian
    • 1
  1. 1.Faculty of Mechanical EngineeringShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations