Journal of Failure Analysis and Prevention

, Volume 13, Issue 4, pp 409–419 | Cite as

Failures of High-Temperature Critical Components in Combined Cycle Power Plants

  • P. Kannan
  • K. S. Amirthagadeswaran
  • T. Christopher
  • B. Nageswara Rao
Lessons Learned

Abstract

This article highlights briefly the reported failure of critical parts and equipment in gas turbine, heat recovery steam generator, and steam turbine, in addition to the requirements of lifetime predictions for the high-temperature components in the combined cycle power plant (CCPP). For assessing fracture strength of flawed structural components in high-temperature environments, the first and foremost thing observed is to ascertain the reason for cracking. Special considerations are to be given in case of stress corrosion cracking, environmentally assisted cracking or bulk creep damage. Sensitivity analysis has to be performed to identify the influencing material properties and crack sizes on the load-bearing capacity of the structural component. An elastic–plastic criterion is examined by considering the fracture data of center crack tension specimens on several materials.

Keywords

Corrosion Creep Fatigue Fretting Gas turbines Pipelines Steam turbines 

References

  1. 1.
    Electric Generation Efficiency, Working Document of the National Petroleum Council (NPC), Global Oil & Gas, Washington, DC, July, 2007Google Scholar
  2. 2.
    Webster, G.A., Ainsworth, R.A.: High Temperature Component Life Assessment, 1st edn. Chapman & Hall, London (1994)CrossRefGoogle Scholar
  3. 3.
    Viswanathan, R., Stringer, J.: Failure mechanisms of high temperature components in power plants. Trans. ASME 122, 247–255 (2000)Google Scholar
  4. 4.
    Carazas, F.J.G., de Souza, G.F.M.: Availability analysis of gas turbines used in power plants. Int. J. Thermodyn. 12, 28–37 (2009)Google Scholar
  5. 5.
    Simmons, H.: Root Cause Failure Diagnosis. Gas Turbine Technology Center, South West Research Institute, San Antonio (2007)Google Scholar
  6. 6.
    Hou, J., Wicks, B.J., Antoniou, R.A.: An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. Eng. Fail. Anal. 9, 201–211 (2002)CrossRefGoogle Scholar
  7. 7.
    Poursaeidi, E., Mohammadi, M.R.: Failure analysis of lock-pin in a gas turbine engine. Eng. Fail. Anal. 15, 847–855 (2008)CrossRefGoogle Scholar
  8. 8.
    Chang, J.C., Yun, Y.H., Kim, C.C.J.C.: Failure analysis of gas turbine buckets. Eng. Fail. Anal. 10, 559–567 (2003)CrossRefGoogle Scholar
  9. 9.
    Khajavi, M.R., Shariat, M.H.: Failure of first stage gas turbine blades. Eng. Fail. Anal. 11, 589–597 (2004)CrossRefGoogle Scholar
  10. 10.
    McMinn, A.: Coatings Technology for Hot Components of Industrial Combustion Turbines: A Review of the State-of-the-Art, Research Project 2388-3. Electric Power Research Institute, Charlotte (1987)Google Scholar
  11. 11.
    Eliaz, N., Shemesh, G., Latanision, R.M.: High temperature corrosion problems in the electric power industry and their solution. Eng. Fail. Anal. 9, 31 (2002)CrossRefGoogle Scholar
  12. 12.
    Schilke, P.W.: Advanced Gas Turbines Materials and Coatings, GER-3569F, GE Energy, Schenectady (2004)Google Scholar
  13. 13.
    Saunders, S.R.J., Hossain, M.K., Ferguson, J.M.: Comparison of hot-salt corrosion test procedures. In: Proceedings of High Temperature Alloys for Gas Turbines, Liege, p 177 (1982)Google Scholar
  14. 14.
    Mazur, Z., Hernandez-Rossette, A., Garcia-Illescas, R., Luna-Ramirez, A.: Failure analysis of a gas turbine nozzle. Eng. Fail. Anal. 15, 913–921 (2008)CrossRefGoogle Scholar
  15. 15.
    Brandt, D.E., Wesorick, R.R.: GE Gas Turbine Design Philosophy, GER3434D, GE Industrial Power Systems, Schenectady (1994)Google Scholar
  16. 16.
    Garcia, D.B., Grandt, A.F.: Fractographic investigation of fretting fatigue cracks in Ti–6Al–4V. Eng. Fail. Anal. 12, 537–548 (2005)CrossRefGoogle Scholar
  17. 17.
    Barella, S., Boniardi, M., Cincera, S., Pellin, P., Degive, X., Gijbels, S.: Failure analysis of a third stage gas turbine blade. Eng. Fail. Anal. 18, 386–393 (2011)CrossRefGoogle Scholar
  18. 18.
    Τawancy, Η.Μ., Al-Hadhrami, L.M.: Degradation of turbine blades and vanes by overheating in a power station. Eng. Fail. Anal. 16, 273–280 (2009)CrossRefGoogle Scholar
  19. 19.
    Bulloch, J.H., Callagy, A.G.: Assessment of a premature failure in a gas turbine part. Eng. Fail. Anal. 7, 411–426 (2000)CrossRefGoogle Scholar
  20. 20.
    Kim, H.: Crack evaluation of the fourth stage blade in a low-pressure steam turbine. Eng. Fail. Anal. 18, 907–913 (2011)CrossRefGoogle Scholar
  21. 21.
    Azevedo, C.R.F., Sinátora, A.: Erosion-fatigue of steam turbine blades. Eng. Fail. Anal. 16, 2290–2303 (2009)CrossRefGoogle Scholar
  22. 22.
    Sz, J.K., Segura, J.A., Gonzalez, G., García, R.J.C., Sierra, F., Nebradt, E.J., Rodriguez, G.J.A.: Failure analysis of the 350 MW steam turbine blade root. Eng. Fail. Anal. 16, 1270–1281 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, W.Z., Xuan, F.Z., Zhu, K.L., Tu, S.T.: Failure analysis of the final stage blade in steam turbine. Eng. Fail. Anal. 14, 632–641 (2007)CrossRefGoogle Scholar
  24. 24.
    Srikanth, S., Ravikumar, B., Das, S.K., Gopalakrishna, K., Nandakumar, K., Vijayan, P.: Analysis of failures in boiler tubes due to fireside corrosion in a waste heat recovery boiler. Eng. Fail. Anal. 10, 59–66 (2003)CrossRefGoogle Scholar
  25. 25.
    Dooley, R.B., Bursik, A., Chem, P.P.: Boiler and HRSG tube failures, corrosion fatigue. J. Power Plant Chem. 11(10), 586–591 (2009) Google Scholar
  26. 26.
    Dzioba, I.: Failure assessment analysis of pipelines for heat and power generating plants according to the SINTAP procedures. Int. J. Press. Vessels Pip. 82, 787–796 (2005)CrossRefGoogle Scholar
  27. 27.
    Nageswara Rao, B., Acharya, A.R.: Fracture analysis of a surface cracked plate under tension. Eng. Fract. Mech. 32, 551–559 (1989)CrossRefGoogle Scholar
  28. 28.
    Nageswara Rao, B., Acharya, A.R., Subramanyam, J.D.A., Kartha, N.R.U.K.: “Burst pressure prediction of a maraging steel chamber with surface cracks”, Proceedings of the Seventh International Conference on Fracture (ICF-7), Houston, USA during March 20–24, 1989. Adv. Fract. Res. 4, 2573–2581 (1989)Google Scholar
  29. 29.
    Nageswara Rao, B., Acharya, A.R.: Fracture behaviour of a high strength medium carbon low alloy steel. Eng. Fract. Mech. 53(2), 303–308 (1996)CrossRefGoogle Scholar
  30. 30.
    Nageswara Rao, B., Acharya, A.R.: Failure assessment on 34Cr Mo4 Grade steel cylindrical pressure vessels with an axial surface crack. Int. J. Press. Vessels Pip. 72, 157–163 (1997)CrossRefGoogle Scholar
  31. 31.
    Nageswara Rao, B., Acharya, A.R.: Failure assessment on M300grade maraging steel cylindrical pressure vessels with an internal surface crack. Int. J. Press. Vessels Pip. 75, 537–543 (1998)CrossRefGoogle Scholar
  32. 32.
    Govindan Potti, P.K., Nageswara Rao, B., Srivastava, V.K.: Residual strength of aluminium–lithium alloy center surface crack tension specimen at cryogenic temperatures. Int. J. Cryog. 40, 789–795 (2000)CrossRefGoogle Scholar
  33. 33.
    Rama Sarma, B.S.V., Govindan Potti, P.K., Nageswara Rao, B.: Failure behaviour of an ultra high strength low alloy steel. Mater. Sci. Technol. 18, 787–798 (2002)CrossRefGoogle Scholar
  34. 34.
    Christopher, T., Sankaranarayan Samy, K., Nageswara Rao, B.: Fracture strength of flawed cylindrical pressure vessels under cryogenic temperatures. Int. J. Cryog. 42, 661–673 (2002)CrossRefGoogle Scholar
  35. 35.
    Christopher, T., Sankaranarayan Samy, K., Nageswara Rao, B.: Fracture behaviour of maraging steel tensile specimens and pressurized cylindrical vessels. Fatigue Fract. Eng. Mater. Struct. 27, 177–186 (2004)CrossRefGoogle Scholar
  36. 36.
    Christopher, T., Sankaranarayanasamy, K., Nageswara Rao, B.: Correlating cryogenic fracture strength using a modified two-parameter method. Eng. Fract. Mech. 72(3), 475–490 (2005)CrossRefGoogle Scholar
  37. 37.
    Christopher, T., Sankaranarayanasamy, K., Nageswara Rao, B.: Failure assessment on tensile cracked specimens of aluminium alloys. Trans. ASME J. Press. Vessel Technol. 126, 404–406 (2004)CrossRefGoogle Scholar
  38. 38.
    Christopher, T., Sankaranarayanasamy, K., Nageswara Rao, B.: Failure assessment of flawed steel cylinders tested under internal pressure. Steel Grips 3(2), 130–137 (2005)Google Scholar
  39. 39.
    Damage Tolerant Design Handbook: A Compilation of Fracture and Crack Growth Data for High Strength Alloys, Metals and Ceramic Information, Battele, Columbus Laboratories, Ohio Report No. MCIC-HB-I (1972)Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • P. Kannan
    • 1
  • K. S. Amirthagadeswaran
    • 2
  • T. Christopher
    • 3
  • B. Nageswara Rao
    • 4
  1. 1.Rajiv Gandhi Combined Cycle Power ProjectNTPC LtdKayamkulamIndia
  2. 2.Faculty of Mechanical EngineeringGovernment College of TechnologyCoimbatoreIndia
  3. 3.Faculty of Mechanical EngineeringGovernment College of EngineeringTirunelveliIndia
  4. 4.Faculty of Mechanical Engineering, School of Mechanical and Civil SciencesKL UniversityVaddeswaramIndia

Personalised recommendations