Journal of Failure Analysis and Prevention

, Volume 12, Issue 3, pp 330–337 | Cite as

Corrosion Failures in Gas Turbine Hot Components

  • E. KosieniakEmail author
  • K. Biesiada
  • J. Kaczorowski
  • M. Innocenti
Technical Article---Peer-Reviewed


At elevated temperatures hot corrosion often takes place in gas turbines and other combustion turbomachinery. The main corrosion issues are high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion. Two case histories of gas turbine hot components are presented. The mechanisms for different types of hot corrosion are discussed. The influence of temperature, composition, and microstructure of materials on hot corrosion is described. A variety of practical approaches to minimize hot corrosion are considered.


Failure analysis Hot corrosion Superalloys Gas turbine hot gas path 


  1. 1.
    Cramer, S.D., Covino Jr., B.S.: ASM Handbook, Volume 13C—Corrosion: Environments and Industries. ASM International, Materials Park (2006)Google Scholar
  2. 2.
    Khajavi, M.R., Shariat, M.H.: Failure of first stage gas turbine blades. Eng. Fail. Anal. 11, 589–597 (2004)CrossRefGoogle Scholar
  3. 3.
    Singh, H., Puri, D., Prakash, S.: An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe- and Ni-based superalloys. Rev. Adv. Mater. Sci. 16, 27–50 (2007)Google Scholar
  4. 4.
    Eliaz, N., Shemesh, G., Latanision, R.M.: Hot corrosion in gas turbine components. Eng. Fail. Anal. 9, 31 (2002)CrossRefGoogle Scholar
  5. 5.
    El-Dahshan, M.E.: Case study of corrosion failure of an aluminide coating in gas turbine. Struct. Struct. Dyn. Mater. Conf. 25, A84-42664 (1984) Google Scholar
  6. 6.
    Stringer, J.: High temperature corrosion problems in the electric power industry and their solution. In: Rapp R.A. (ed.) High Temperature Corrosion, San Diego, p. 389 (1981)Google Scholar
  7. 7.
    DeCrescente, M.A., Bornstein, N.S.: Formation and reactivity thermodynamics of sodium sulfate with gas turbine alloys. Corrosion 24, 127 (1968)Google Scholar
  8. 8.
    Conde, J.F.G., Erdors, E., Rahmel, A.: Mechanism of hot corrosion. In: Proceeding of High Temperature Alloys for Gas Turbines, Belgium, p. 99 (1982)Google Scholar
  9. 9.
    Cramer, S.D., Covino Jr., B.S.: ASM Handbook Volume 13b: Corrosion: Materials. ASM International, Materials Park (2005)Google Scholar
  10. 10.
    Koul, A.K., Immarigeon, J.P., Dainty, R.V., Patnaik, P.C.: Degradation of high performance aero-engine turbine blades. In: Swaminathan V.P., Cheruvu N.S. (eds.) Advanced Materials and Coatings for Combustion Turbines, Pittsburgh, p. 69 (1993)Google Scholar
  11. 11.
    Stringer, J.: Coatings in electricity supply industry: past, present and opportunities for the future. Surf. Coat. Technol. 1, 108–109 (1998)Google Scholar
  12. 12.
    Viswanathan, R.: An investigation of blade failures in combustion turbines. Eng. Fail. Anal. 9, 493 (2001)CrossRefGoogle Scholar
  13. 13.

Copyright information

© ASM International 2012

Authors and Affiliations

  • E. Kosieniak
    • 1
    Email author
  • K. Biesiada
    • 2
  • J. Kaczorowski
    • 2
  • M. Innocenti
    • 3
  1. 1.Warsaw Institute of AviationWarsawPoland
  2. 2.General Electric Company Polska Sp. z o. o.WarsawPoland
  3. 3.General Electric Nouvo Pignone S.p.A.FlorenceItaly

Personalised recommendations