Skip to main content
Log in

Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Photoactive tetragonal bismuth oxide powder with different semiconducting characteristics was synthesized from Bi-pellets by flame spray oxidation. The effect of feedstock particle size and standoff distance (SOD) on the physical properties of β-Bi2O3 keeping constant the fuel/oxygen ratio is here reported. The flame spray oxidized powder was collected either from evaporated or in-flight particles quenched in water. The combination of flame spray processing parameters led to different β-Bi2O3 phase contents, oxidation characteristics, size distribution (nanometric and micrometric sized), morphology, and optical properties of the sprayed powder. The highest micrometric β-Bi2O3 content quenched in water was obtained at a SOD of 30 cm using a particle size distribution of 12-60 μm of Bi-feedstock. The obtained powder from in-flight particles collected in water allowed us to analyze the oxidation characteristics of bismuth. Micrometric powder shows the synthesis of snowman-like Bi/β-Bi2O3 Janus particles. The nanometric sized Bi2O3 powder was continuously obtained by spray oxidation, where its collection efficiency depends on processing parameters and showed spherical morphology and a highly pure tetragonal phase with narrow visible light absorbance (Eg = 2.26 eV). These optical characteristics indicate that the obtained β-Bi2O3 powder is suitable for high-performance visible-light photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Zhao, F. Tian, R. Wang, and R. Chen, A Review on Bismuth-Related Nanomaterials for Photocatalysis, Rev. Adv. Sci. Eng., 2014, 3(1), p 3-27. https://doi.org/10.1166/rase.2014.1050

    Article  Google Scholar 

  2. D.A. Fernandez-Benavides, A.I. Gutierrez-Perez, A.M. Benitez-Castro, M.T. Ayala-Ayala, B. Moreno-Murguia, and J. Muñoz-Saldaña, Comparative Study of Ferroelectric and Piezoelectric Properties of BNT-BKT-BT Ceramics near the Phase Transition Zone, Materials (Basel), 2018, 11(3), p 2-16. https://doi.org/10.3390/ma11030361

    Article  CAS  Google Scholar 

  3. D.A. Fernández-Benavides, L. Cervera-Chiner, Y. Jiménez, O.A. de Fuentes, A. Montoya, and J. Muñoz-Saldaña, A Novel Bismuth-Based Lead-Free Piezoelectric Transducer Immunosensor for Carbaryl Quantification, Sens. Actuators B Chem., 2019, 285, p 423-430. https://doi.org/10.1016/j.snb.2019.01.081

    Article  CAS  Google Scholar 

  4. M. Esquivel-Gaon, S. Anguissola, D. Garry, A.D.C. Gallegos-Melgar, J.M. Saldaña, K.A. Dawson, A. De Vizcaya-Ruiz, and L.M. Del Razo, Bismuth-Based Nanoparticles as the Environmentally Friendly Replacement for Lead-Based Piezoelectrics, RSC Adv., 2015, 5(35), p 27295-27304.

    Article  CAS  Google Scholar 

  5. T. Jardiel, A.C. Caballero, and M. Villegas, Aurivillius Ceramics: Bi4Ti3O12-Based Piezoelectrics, J. Ceram. Soc. Jpn., 2008, 116, p 511-518.

    Article  CAS  Google Scholar 

  6. M. Mehring, From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds, Coord. Chem. Rev., 2007, 251(7-8), p 974-1006. https://doi.org/10.1016/j.ccr.2006.06.005

    Article  CAS  Google Scholar 

  7. G. Malmros, The Crystal Structure of Alpha-Bi2O3, Acta Chem. Scand., 1970 https://doi.org/10.3891/acta.chem.scand.24-0384

    Article  Google Scholar 

  8. H.A. Harwig, On the Structure of Bismuthsesquioxide: The Alpha, Beta, Gamma and Delta-Phase , Z. Anorg Allg. Chem., 1978, 444, p 151-166. https://doi.org/10.1090/gsm/146/03

    Article  CAS  Google Scholar 

  9. N. Cornei, N. Tancret, F. Abraham, and O. Mentré, New ε-Bi2O3 Metastable Polymorph, Inorg. Chem., 2006, 45(13), p 4886-4888. https://doi.org/10.1021/ic0605221

    Article  CAS  Google Scholar 

  10. A.F. Gualtieri, S. Immovilli, and M. Prudenziati, Powder X-Ray Diffraction Data for the New Polymorphic Compound ω-Bi2O3, Powder Diffr., 1997, 12(2), p 90-92. https://doi.org/10.1017/s0885715600009490

    Article  CAS  Google Scholar 

  11. S. Ghedia, T. Locherer, R. Dinnebier, D.L.V.K. Prasad, U. Wedig, and M. Jansen, High-Pressure and High-Temperature Multianvil Synthesis of Metastable Polymorphs of Bi2O3: Crystal Structure and Electronic Properties, Phys. Rev. B, 2010, 82, p 1-12. https://doi.org/10.1103/PhysRevB.82.024106

    Article  CAS  Google Scholar 

  12. A.L.J. Pereira, O. Gomis, J.A. Sans, J. Contreras-García, F.J. Manjón, P. Rodríguez-Hernández, A. Muñoz, and A. Beltrán, β-Bi2O3 under Compression: Optical and Elastic Properties and Electron Density Topology Analysis, Phys. Rev. B, 2016, 93(22), p 1-13. https://doi.org/10.1103/PhysRevB.93.224111

    Article  CAS  Google Scholar 

  13. A.L.J. Pereira, J.A. Sans, R. Vilaplana, O. Gomis, F.J. Manjón, P. Rodríguez-Hernández, A. Muñoz, C. Popescu, and A. Beltrán, Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study, J. Phys. Chem. C, 2014, 118(40), p 23189-23201. https://doi.org/10.1021/jp507826j

    Article  CAS  Google Scholar 

  14. X. Meng, and Z. Zhang, Bismuth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches, J. Mol. Catal. A Chem, 2016, 423, p 533-549. https://doi.org/10.1016/j.molcata.2016.07.030

    Article  CAS  Google Scholar 

  15. M. Schlesinger, S. Schulze, M. Hietschold, and M. Mehring, Metastable β-Bi2O3 Nanoparticles with High Photocatalytic Activity from Polynuclear Bismuth Oxido Clusters, Dalt. Trans., 2013, 42(4), p 1047-1056. https://doi.org/10.1039/c2dt32119j

    Article  CAS  Google Scholar 

  16. L. Liu, J. Jiang, S. Jin, Z. Xia, and M. Tang, Hydrothermal Synthesis of β-Bismuth Oxide Nanowires from Particles, CrystEngComm, 2011, 13(7), p 2529-2532. https://doi.org/10.1039/c0ce00773k

    Article  CAS  Google Scholar 

  17. J. Wang, X. Yang, K. Zhao, P. Xu, L. Zong, R. Yu, D. Wang, J. Deng, J. Chen, and X. Xing, Precursor-Induced Fabrication of β-Bi2O3 Microspheres and Their Performance as Visible-Light-Driven Photocatalysts, J. Mater. Chem. A, 2013, 1(32), p 9069-9074. https://doi.org/10.1039/c3ta11652b

    Article  CAS  Google Scholar 

  18. H.Y. Jiang, P. Li, G. Liu, J. Ye, and J. Lin, Synthesis and Photocatalytic Properties of Metastable β-Bi2O3 Stabilized by Surface-Coordination Effects, J. Mater. Chem. A R. Soc. Chem., 2015, 3(9), p 5119-5125. https://doi.org/10.1039/c4ta06235c

    Article  CAS  Google Scholar 

  19. T. Selvamani, S. Anandan, L. Granone, D.W. Bahnemann, and M. Ashokkumar, Phase-Controlled Synthesis of Bismuth Oxide Polymorphs for Photocatalytic Applications, Mater. Chem. Front. R. Soc. Chem., 2018, 2(9), p 1664-1673. https://doi.org/10.1039/c8qm00221e

    Article  CAS  Google Scholar 

  20. H.X. Hu, K.Q. Qiu, and G.F. Xu, Preparation of Nanometer δ- and β-Bismuth Trioxide by Vacuum Vapor-Phase Oxidation, Trans. Nonferrous Met. Soc. China (English Ed.), 2006, 16(1), p 173-177. https://doi.org/10.1016/S1003-6326(06)60031-9

    Article  CAS  Google Scholar 

  21. L. Kumari, J.H. Lin, and Y.R. Ma, Synthesis of Bismuth Oxide Nanostructures by an Oxidative Metal Vapour Phase Deposition Technique, Nanotechnology, 2007, 18(29), p 7. https://doi.org/10.1088/0957-4484/18/29/295605

    Article  CAS  Google Scholar 

  22. E. Diez, O. Monnereau, L. Tortet, G. Vacquier, P. Llewellin, and F. Rouquerol, Synthesis of Bismuth (III) Oxide from Oxalate: A Study by Controlled Transformation Rate Thermal Analysis (CRTA), J. Optoelectron. Adv. Mater., 2000, 2(5), p 552-556.

    CAS  Google Scholar 

  23. Q. Huang, S. Zhang, C. Cai, and B. Zhou, β- and α-Bi2O3 Nanoparticles Synthesized via Microwave-Assisted Method and Their Photocatalytic Activity towards the Degradation of Rhodamine B, Mater. Lett., 2011, 65(6), p 988-990. https://doi.org/10.1016/j.matlet.2010.12.055

    Article  CAS  Google Scholar 

  24. J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, and H. Zhu, In Situ Synthesis of α-β Phase Heterojunction on Bi2O3 Nanowires with Exceptional Visible-Light Photocatalytic Performance, Appl. Catal. B Environ., 2013, 142-143, p 504-511. https://doi.org/10.1016/j.apcatb.2013.05.050

    Article  CAS  Google Scholar 

  25. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed. Wiley, Hoboken, 2008.

    Book  Google Scholar 

  26. F. Fanicchia, D.A. Axinte, J. Kell, R. McIntyre, G. Brewster, and A.D. Norton, Combustion Flame Spray of CoNiCrAlY & YSZ Coatings, Surf. Coatings Technol., 2017, 315, p 546-557. https://doi.org/10.1016/j.surfcoat.2017.01.070

    Article  CAS  Google Scholar 

  27. H.A. Harwig, and A.G. Gerards, The Polymorphism of Bismuth Sesquioxide, Thermochim. Acta, 1979, 28(1), p 121-131. https://doi.org/10.1016/0040-6031(79)87011-2

    Article  CAS  Google Scholar 

  28. H.A. Harwig, and J.W. Weenk, Phase Relations in Bismuthsesquioxide, ZAAC J. Inorg. Gen. Chem., 1978, 444(1), p 167-177. https://doi.org/10.1002/zaac.19784440119

    Article  CAS  Google Scholar 

  29. A.V. Naumov, World Market of Bismuth: A Review, Metall. Rare Noble Met., 2007, 48(1), p 13-19. https://doi.org/10.3103/S1067821207010038

    Article  Google Scholar 

  30. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, 1st ed. Springer, New York, 2014.

    Book  Google Scholar 

  31. B.H. Toby, and R.B. Von Dreele, GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package, J. Appl. Crystallogr., 2013, 46(2), p 544-549. https://doi.org/10.1107/S0021889813003531

    Article  CAS  Google Scholar 

  32. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9(7), p 671-675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  33. A.B. Murphy, Band-Gap Determination from Diffuse Reflectance Measurements of Semiconductor Films, and Application to Photoelectrochemical Water-Splitting, Sol. Energy Mater. Sol. Cells, 2007, 91(14), p 1326-1337. https://doi.org/10.1016/j.solmat.2007.05.005

    Article  CAS  Google Scholar 

  34. U.I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer, Dordrecht, 2013.

    Google Scholar 

  35. H.Y. Deng, W.C. Hao, and H.Z. Xu, A Transition Phase in the Transformation from α-, β- And ∈- to δ-Bismuth Oxide, Chinese Phys. Lett., 2011, 28(5), p 3-6. https://doi.org/10.1088/0256-307X/28/5/056101

    Article  CAS  Google Scholar 

  36. F. Mou, C. Chen, J. Guan, D.R. Chen, and H. Jing, Oppositely Charged Twin-Head Electrospray: A General Strategy for Building Janus Particles with Controlled Structures, Nanoscale, 2013, 5(5), p 2055-2064. https://doi.org/10.1039/c2nr33523a

    Article  CAS  Google Scholar 

  37. J. Hu, S. Zhou, Y. Sun, X. Fang, and L. Wu, Fabrication, Properties and Applications of Janus Particles, Chem. Soc. Rev., 2012, 41(11), p 4356-4378. https://doi.org/10.1039/c2cs35032g

    Article  CAS  Google Scholar 

  38. P.E.A. Salomão, D.S. Gomes, E.J.C. Ferreira, F. Moura, L.L. Nascimento, A.O.T. Patrocínio, and M.C. Pereira, Photoelectrochemical Hydrogen Production from Water Splitting Using Heterostructured Nanowire Arrays of Bi2O3/BiAl Oxides as a Photocathode, Sol. Energy Mater. Sol. Cells, 2019, 194, p 276-284. https://doi.org/10.1016/j.solmat.2018.12.037

    Article  CAS  Google Scholar 

  39. M.W. Kim, B. Joshi, E. Samuel, K. Kim, Y. Il Kim, T.G. Kim, M.T. Swihart, and S.S. Yoon, Highly Nanotextured β-Bi2O3 Pillars by Electrostatic Spray Deposition as Photoanodes for Solar Water Splitting, J. Alloys Compd., 2018, 764, p 881-889. https://doi.org/10.1016/j.jallcom.2018.06.047

    Article  CAS  Google Scholar 

  40. H.Y. Jiang, K. Cheng, and J. Lin, Crystalline Metallic Au Nanoparticle-Loaded α-Bi2O3 Microrods for Improved Photocatalysis, Phys. Chem. Chem. Phys., 2012, 14(35), p 12114-12121. https://doi.org/10.1039/c2cp42165h

    Article  CAS  Google Scholar 

  41. G. Zhu, W. Que, and J. Zhang, Synthesis and Photocatalytic Performance of Ag-Loaded β-Bi 2O3 Microspheres under Visible Light Irradiation, J. Alloys Compd., 2011, 509(39), p 9479-9486. https://doi.org/10.1016/j.jallcom.2011.07.046

    Article  CAS  Google Scholar 

  42. K. Yang, J. Li, Y. Peng, and J. Lin, Enhanced Visible Light Photocatalysis over Pt-Loaded Bi2O3: An Insight into Its Photogenerated Charge Separation, Transfer and Capture, Phys. Chem. Chem. Phys. R. Soc. Chem., 2017, 19(1), p 251-257. https://doi.org/10.1039/c6cp06755g

    Article  CAS  Google Scholar 

  43. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, and J. Tang, Visible-Light Driven Heterojunction Photocatalysts for Water Splitting-a Critical Review, Energy Environ. Sci. R. Soc. Chem., 2015, 8(3), p 731-759. https://doi.org/10.1039/c4ee03271c

    Article  CAS  Google Scholar 

  44. C. Li, J. Zhang, and K. Liu, A New Method of Enhancing Photoelectrochemical Characteristics of Bi/Bi2O3 Electrode for Hydrogen Generation via Water Splitting, Int. J. Electrochem. Sci., 2012, 7, p 5028-5034.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CONACYT for the financial support for master and Ph.D studies. This project was funded by CONACYT 293429 and 896 projects carried out at CENAPROT and LIDTRA national laboratories. The Francisco de Paula Santander University, Colombia, for funding in the mobility internship for research. The authors also thank Dr. Jesus Porcayo Calderón, CromoDuro y Horneados S.A. Especial thanks to Ariel Plaza Estrada for his technical support and feedback during the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Muñoz-Saldaña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala-Ayala, M.T., Ferrer-Pacheco, M.Y. & Muñoz-Saldaña, J. Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation. J Therm Spray Tech 30, 1107–1119 (2021). https://doi.org/10.1007/s11666-021-01182-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01182-2

Keywords

Navigation