Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

CFD Simulations of Feeder Tube Pressure Oscillations and Prediction of Clogging in Cold Spray Nozzles

  • 74 Accesses


Cold spray is an additive manufacturing method in which powder particles are accelerated through a supersonic nozzle and impinged into a nearby substrate. This method produces deposits with advantageous attributes, namely with low porosity and low residual stresses, which nearly match those of the bulk material. One challenge with cold spray is nozzle clogging, which occurs when particles bond to the inside of the nozzle, altering the cross-sectional area, increasing roughness on the nozzle inner surface, and causing a drop in the gas velocity, ultimately resulting in a lower quality deposit. Clogging puts certain combinations of materials and operational parameters out of practical reach. A CFD model of the cold spray nozzle is developed to study the flow of metal particles in the cold spray process, and we determine that the two-phase particle-laden flow from the feeder tube is inherently transient. CFD simulations demonstrate that pressure fluctuations in the particle feed system can cause the particles to disperse in the nozzle and ultimately lead to some particles bonding with the nozzle wall. The degree of clogging is found to be strongly dependent on the amplitude of these upstream pressure fluctuations and seemingly independent of the pressure oscillation frequency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


C D :

Coefficient of drag

c p :

Specific heat

d :


E :


F :


F1, F2 :

Empirical factors

g :


J j :

Diffusion flux of species

k :

Thermal conductivity

P :



Reynold’s number

R :

Individual gas constant

r :

Radial dimension

t :


T i :

Particle impact temperature

T m :

Melting temperature

T R :

Reference temperature (293 K)

T :


v :

Flow velocity

v crit :

Critical velocity

v impact :

Impact velocity

x :

Axial distance

μ :


ρ :


σ TS :

Tensile strength

σ U :

Yield stress

τ :


τ r :

Drag force






Critical velocity ratio


  1. 1.

    V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, CRC Press, Boca Raton, 2007

  2. 2.

    K. Binder, J. Gottschalk, M. Kollenda, F. Gartner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20(1-2), p 234

  3. 3.

    C.A. Widener, O.C. Ozdemir, and M. Carter, Structural Repair Using Cold Spray Technology for Enhanced Sustainability of High Value Assets, Procedia Manuf., 2018, 21, p 361-368

  4. 4.

    V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi, and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20(3), p 425-431

  5. 5.

    J. Morère, D.P. Schmidt, P. Liebersbach, J.J. Watkins, Suppression of Clogging in Cold Spray Nozzles (University of Massachusetts Amherst), CSAT, 2018

  6. 6.

    M. Siopis, A. Nardi, A. Espinal, L. Binek, and T. Landry, Study of Nozzle Clogging During Cold Spray (Northeastern University), CSAT, 2017

  7. 7.

    A. Sova, S. Grigoriev, A. Kochetkova, and I. Smurov, Influence of Powder Injection Point Position on Efficiency of Powder Preheating in Cold Spray: Numerical Study, Surf. Coat. Technol., 2014, 242, p 226

  8. 8.

    M. Meyer and R. Lupoi, An Analysis of the Particulate Flow in Cold Spray Nozzles, Mech. Sci., 2015, 6(2), p 127-136

  9. 9.

    A. Sova, A. Okunkova, S. Grigoriev, and I. Smurov, Velocity of the Particles Accelerated by a Cold Spray Micronozzle: Experimental Measurements and Numerical Simulation, J. Therm. Spray Technol., 2013, 22(1), p 75

  10. 10.

    W. Tang, J. Liu, Q. Chen, X. Zhang, and Z. Chen, The Effects of Two Gas Flow Streams with Initial Temperature and Pressure Differences in Cold Spraying Nozzle, Surf. Coat. Technol., 2014, 240, p 86-95

  11. 11.

    C. Zhang, Q. Chen, J. Liu, W. Tang, K. Wang, and J. Song, Numerical Study on the Effect of the Cold Powder Carrier Gas on Powder Stream Characteristics in Cold Spray, Surf. Coat. Technol., 2016, 294, p 177-185

  12. 12.

    X. Wang, B. Zhang, J. Lv, and S. Yin, Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle, J. Therm. Spray Technol., 2015, 24(4), p 696

  13. 13.

    S. Yin, Q. Liu, H. Liao, and X. Wang, Effect of Injection Pressure on Particle Acceleration, Dispersion and Deposition in Cold Spray, Comput. Mater. Sci., 2014, 90, p 7-15

  14. 14.

    R. Lupoi and W. O’Neill, Powder Stream Characteristics in Cold Spray Nozzles, Surf. Coat. Technol., 2011, 206(6), p 1069-1076

  15. 15.

    O.C. Ozdemir and C.A. Widener, Influence of Powder Injection Parameters in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(7), p 1411

  16. 16.

    S. Yin, M. Meyer, W. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J. Therm. Spray Technol., 2016, 25(5), p 874

  17. 17.

    B. Vreman, B.J. Geurts, N.G. Deen, J.A.M. Kuipers, and J.G.M. Kuerten, Two- and Four-Way Coupled Euler-Lagrangian Large-Eddy Simulation of Turbulent Particle-Laden Channel Flow, Vol 82, Springer, Berlin, 2008

  18. 18.

    R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978

  19. 19.

    ANSYS Fluent, Fluent Theory Guide, 17.2.

  20. 20.

    T. Schmidt, F. Grtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

  21. 21.

    A. Nardi, X. Wang, J. Sharon, M. Mordasky, and A. Espinal, Cold Spray Materials and Process Development at UTRC (Worcester Polytechnic Institute), CSAT, 2015

  22. 22.

    X.-T. Luo, Y.-J. Li, C.-X. Li, G.-J. Yang, and C.-J. Li, Effect of Spray Conditions on Deposition Behavior and Microstructure of Cold Sprayed Ni Coatings Sprayed with a Porous Electrolytic Ni Powder, Surf. Coat. Technol., 2016, 289, p 85-93

  23. 23.

    M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16, p 643-650

Download references


The authors acknowledge the contributions from the ARL, UTRC, and MGHPCC computing resources. Funding was provided from the Army Research Laboratory under Contract W911NF-15-2-0024.

Author information

Correspondence to Piotr Liebersbach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liebersbach, P., Foelsche, A., Champagne, V.K. et al. CFD Simulations of Feeder Tube Pressure Oscillations and Prediction of Clogging in Cold Spray Nozzles. J Therm Spray Tech 29, 400–412 (2020). https://doi.org/10.1007/s11666-020-00992-0

Download citation


  • cold spray
  • computational fluid dynamics
  • clogging
  • feeder tube oscillations
  • particle dispersion
  • particle–wall collisions