Advertisement

Solubility, Mechanical and Biological Properties of Fluoridated Hydroxyapatite/Calcium Silicate Gradient Coatings for Orthopedic and Dental Applications

  • Xue Yin
  • Yu BaiEmail author
  • Sheng-jian Zhou
  • Wen Ma
  • Xue Bai
  • Wei-dong Chen
PEER REVIEWED

Abstract

Functionally graded fluoridated hydroxyapatite/calcium silicate (FHA/CS) bioceramic coatings (FGCs) were designed and prepared using suspension plasma spraying technology in order to improve the chemical stability and bonding strength of single HA coatings. Phase compositions, microstructures, solubility, mechanical and biological properties of the FGCs were investigated. The results showed that the coatings had a continuous compositional gradient along the cross section without a distinguishable interface. The amount of CS gradually decreased, and the amount of FHA gradually increased from the substrate to the FGC surface. The bonding strength of the FGCs was improved due to the design of gradient structure and reached 29.2 MPa, which was 20% higher than that of the pure FHA coating. Dissolution behavior of the FGCs was evaluated by immersing samples in citric acid-modified PBS solution (pH = 4.0), and the solubility resistance of the FGCs was improved due to the presence of the surface FHA layer resulting in a lower Ca2+ ion and Si4+ ion release. In addition, the FGCs showed a similar apatite-forming ability and cellular response in vitro to FHA coatings, suggesting a potential competitive use for coating bone implants.

Keywords

biological properties calcium silicate fluoridated hydroxyapatite gradient coatings mechanical properties solubilities suspension plasma spraying 

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (51672136), National Science and Technology Major Project (2017-VII-0012-0108), Natural Science Foundation of Inner Mongolia Autonomous Region (2018MS05010), Science and Technology Major Project of Inner Mongolia Autonomous Region (2018-810), Research Innovation Program for Postgraduate of Inner Mongolia Autonomous Region (S2018111948Z) and Undergraduate Science and Technology Innovation Fund Project of Inner Mongolia University of Technology (2019-39-61).

References

  1. 1.
    W. Suchanek and M. Yoshimura, Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 1998, 13, p 94-117CrossRefGoogle Scholar
  2. 2.
    L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: a Review, J. Biomed. Mater. Res., 2010, 58, p 570-592CrossRefGoogle Scholar
  3. 3.
    J.L. Ong, D.L. Carnes, and K. Bessho, Evaluation of Titanium Plasma-Sprayed and Plasma-Sprayed Hydroxyapatite Implants in Vivo, Biomaterials, 2004, 25, p 4601-4606CrossRefGoogle Scholar
  4. 4.
    U. Ripamonti, L.C. Roden, and L.F. Renton, Osteoinductive Hydroxyapatite-Coated Titanium Implants, Biomaterials, 2012, 33, p 3813-3823CrossRefGoogle Scholar
  5. 5.
    Y.C. Yang and E. Chang, Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti-6Al-4 V Substrate, Biomaterials, 2001, 22, p 1827-1836CrossRefGoogle Scholar
  6. 6.
    Y.C. Yang and E. Chang, Measurements of Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy, Surf. Coat. Technol., 2005, 190, p 122-131CrossRefGoogle Scholar
  7. 7.
    Y.C. Yang, E. Chang, B.H. Hwang, and S.Y. Lee, Biaxial Residual Stress States of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate, Biomaterials, 2000, 21, p 1327-1337CrossRefGoogle Scholar
  8. 8.
    L. Gineste, M. Gineste, X. Ranz, A. Ellefterion, A. Guilhem, N. Rouquet, and P. Frayssinet, Degradation of Hydroxylapatite, Fluorapatite, and Fluorhydroxyapatite Coatings of Dental Implants in Dogs, J. Biomed. Mater. Res., 1999, 48, p 224-234CrossRefGoogle Scholar
  9. 9.
    S. Vahabzadeh, M. Roy, A. Bandyopadhyay, and S. Bose, Phase Stability and Biological Property Evaluation of Plasma Sprayed Hydroxyapatite Coatings for Orthopedic and Dental Applications, Acta Biomater., 2015, 17, p 47-55CrossRefGoogle Scholar
  10. 10.
    V. Cannillo, L. Lusvarghi, and A. Sola, Production and Characterization of Plasma-Sprayed TiO2-Hydroxyapatite Functionally Graded Coatings, J. Eur. Ceram. Soc., 2008, 8, p 2161-2169CrossRefGoogle Scholar
  11. 11.
    R. Kumaria and J.D. Majumdar, Studies on Corrosion Resistance and Bioactivity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4 V) and the Same After Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935-943CrossRefGoogle Scholar
  12. 12.
    X. Pang and Y. Huang, Physical Properties of Nano-HAs/ZrO2 Coating on Surface of Titanium Materials Used in Dental-Implants and Its Biological Compatibility, J. Nanosci. Nanotechnol., 2012, 12, p 902-910CrossRefGoogle Scholar
  13. 13.
    A. Cattini, D. Bellucci, A. Sola, L. Pawłowski, and V. Cannillo, Suspension Plasma Spraying of Optimised Functionally Graded Coatings of Bioactive Glass/Hydroxyapatite, Surf. Coat. Technol., 2013, 236, p 118-126CrossRefGoogle Scholar
  14. 14.
    W. Xue, X. Liu, X. Zheng, and C. Ding, In Vivo Evaluation of Plasma-Sprayed Wollastonite Coating, Biomaterials, 2005, 26, p 3455-3460CrossRefGoogle Scholar
  15. 15.
    X. Lu, K. Li, Y. Xie, L. Huang, and X. Zheng, Chemical Stability and Osteogenic Activity of Plasma-Sprayed Boron-Modified Calcium Silicate-Based Coatings, J. Mater. Sci. Mater. Med., 2016, 27, p 166CrossRefGoogle Scholar
  16. 16.
    X. Liu and C. Ding, Apatite Formed on the Surface of Plasma Sprayed Wollastonite Coating Immersed in Simulated Body Fluid, Biomaterials, 2001, 22, p 2007-2012CrossRefGoogle Scholar
  17. 17.
    J.R. Henstock, L.T. Canham, and S.I. Anderson, Silicon: the Evolution of Its Use in Biomaterials, Acta Biomater., 2015, 11, p 17-26CrossRefGoogle Scholar
  18. 18.
    X. Liu and C. Ding, Plasma Sprayed Wollastonite/TiO2 Composite Coatings on Titanium Alloys, Biomaterials, 2002, 23, p 4065-4077CrossRefGoogle Scholar
  19. 19.
    S. Zhou, Y. Bai, W. Ma, and C. Chen, Suspension Plasma-Sprayed Fluoridated Hydroxyapatite/Calcium Silicate Composite Coatings for Biomedical Applications, J. Therm. Spray Technol., 2019, 28, p 1028-1038Google Scholar
  20. 20.
    S. Ni and J. Chang, In Vitro Degradation, Bioactivity, and Cytocompatibility of Calcium Silicate, Dimagnesium Silicate, and Tricalcium Phosphate Bioceramics, J. Biomater. Appl., 2009, 24, p 139-158CrossRefGoogle Scholar
  21. 21.
    P. Nasker, M. Mukherjee, S. Kant, and M. Das, Fluorine Substituted Nano Hydroxyapatite: Synthesis, Bio-activity and Antibacterial Response Study, Ceram. Int., 2018, 44, p 22008-22013CrossRefGoogle Scholar
  22. 22.
    H. Eslami, M. Solatihashjin, and M. Tahriri, The Comparison of Powder Characteristics and Physicochemical, Mechanical and Biological Properties Between Nanostructure Ceramics of Hydroxyapatite and Fluoridated Hydroxyapatite, Mater. Sci. Eng., C, 2009, 29, p 1387-1398CrossRefGoogle Scholar
  23. 23.
    Y. Bai, S. Zhou, L. Shi, W. Ma, and C. Liu, Fabrication and Characterization of Suspension Plasma-Sprayed Fluoridated Hydroxyapatite Coatings for Biomedical Applications, J. Therm. Spray Technol., 2018, 27, p 1322-1332CrossRefGoogle Scholar
  24. 24.
    Y. Bai, B. Chi, W. Ma, and C. Liu, Suspension Plasma-Sprayed Fluoridated Hydroxyapatite Coatings: Effects of Spraying Power on Microstructure, Chemical Stability and Antibacterial Activity, Surf. Coat. Technol., 2019, 361, p 222-230CrossRefGoogle Scholar
  25. 25.
    I. Bieloshapka, P. Jiricek, M. Vorokhta, E. Tomsik, A. Rednyk, R. Perekrestov, K. Jurek, E. Ukraintsev, K. Hruska, and O. Romanyuk, Pd-catalysts for DFAFC Prepared by Magnetron Sputtering, Appl. Surf. Sci., 2017, 419, p 838-846CrossRefGoogle Scholar
  26. 26.
    G. Popescu-Pelin, F. Sima, L.E. Sima, C.N. Mihailescu, C. Luculescu, I. Iordache, M. Socol, G. Socol, and I.N. Mihailescu, Hydroxyapatite Thin Films Grown by Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation: Comparative Study, Appl. Surf. Sci., 2017, 418, p 580-588CrossRefGoogle Scholar
  27. 27.
    Z. Ma, Y. Jiang, H. Xiao, B. Jiang, H. Zhang, M. Peng, G. Dong, X. Yu, and J. Yang, Sol-gel Preparation of Ag-Silica Nanocomposite with High Electrical Conductivity, Appl. Surf. Sci., 2018, 436, p 732-738CrossRefGoogle Scholar
  28. 28.
    H. Farnoush, G. Aldıç, and H. Çimenoğlu, Functionally Graded HA-TiO2 Nanostructured Composite Coating on Ti-6Al-4 V Substrate via Electrophoretic Deposition, Surf. Coat. Technol., 2015, 265, p 7-15CrossRefGoogle Scholar
  29. 29.
    E. Bannier, M. Vicent, E. Rayón, R. Benavente, M.D. Salvador, and E. Sánchez, Effect of TiO2 Addition on the Microstructure and Nanomechanical Properties of Al2O3 Suspension Plasma Sprayed Coatings, Appl. Surf. Sci., 2014, 316, p 141-146CrossRefGoogle Scholar
  30. 30.
    C.J. Huang, K. Yang, N. Li, M.P. Planche, C. Verdy, H.L. Liao, and G. Montavon, Microstructures and Wear-Corrosion Performance of Vacuum Plasma Sprayed and Cold Gas Dynamic Sprayed Muntz Alloy Coatings, Surf. Coat. Technol., 2019, 371, p 172-184CrossRefGoogle Scholar
  31. 31.
    L. Zhu, N. Zhang, B. Zhang, F. Sun, R. Bolot, M.-P. Planche, H. Liao, and C. Coddet, Very Low Pressure Plasma Sprayed Alumina and Yttria-Stabilized Zirconia Thin Dense Coatings Using a Modified Transferred Arc Plasma Torch, Appl. Surf. Sci., 2011, 258, p 1422-1428CrossRefGoogle Scholar
  32. 32.
    C. Wang, Y. Wang, S. Fan, Y. You, L. Wang, C. Yang, X. Sun, and X. Li, Optimized Functionally Graded La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Suspension Plasma Spraying, J. Alloys. Compd., 2015, 649, p 1182-1190CrossRefGoogle Scholar
  33. 33.
    Y. Zhu and X. Chen, Discussion on Crystallinity Calculated by the Technology of Peak Separation, Res. Explor. Lab., 2010, 3, p 41-43Google Scholar
  34. 34.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Weibull Modulus Of Nano-hardness and Elastic Modulus of Hydroxyapatite Coating, J. Mater. Sci., 2009, 44, p 4911-4918CrossRefGoogle Scholar
  35. 35.
    A. Ganvir, R.F. Calinas, N. Markocsan, N. Curry, and S. Joshi, Experimental Visualization of Microstructure Evolution During Suspension Plasma Spraying of Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2019, 39, p 470-481CrossRefGoogle Scholar
  36. 36.
    N. Curry, K.J. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5, p 338-356CrossRefGoogle Scholar
  37. 37.
    M. Bhuiyan, R. Saidur, M. Amalina, R. Mostafizur, and A. Islam, Effect of Nanoparticles Concentration and their Sizes on Surface Tension of Nanofluids, Proc. Eng., 2015, 105, p 431-437CrossRefGoogle Scholar
  38. 38.
    K.J. Roche and K.T. Stanton, Measurement of Fluoride Substitution in Precipitated Fluorhydroxyapatite Nanoparticles, J. Fluor. Chem., 2014, 161, p 102-109CrossRefGoogle Scholar
  39. 39.
    L.M. Rodríguez-Lorenzo, J.N. Hart, and K.A. Gross, Structural and Chemical Analysis of Well-Crystallized Hydroxyfluorapatites, J. Phys. Chem. B., 2003, 107, p 8316-8320CrossRefGoogle Scholar
  40. 40.
    G. Liu, X. Geng, H. Pang, X. Li, X. Li, P. Zhu, and C. Zhang, Deposition of Nanostructured Fluorine-Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray, J. Am. Ceram. Soc., 2016, 99, p 2899-2904CrossRefGoogle Scholar
  41. 41.
    K. Cheng, S. Zhang, and W.J. Weng, The F Content in Sol-Gel Derived FHA Coatings: An XPS Study, Surf. Coat. Tech., 2005, 198, p 237-241CrossRefGoogle Scholar
  42. 42.
    S. Kanhed, S. Awasthi, S. Goel, A. Pandey, R.K. Sharma, A. Upadhyay, and K. Balani, Porosity Distribution Affecting Mechanical and Biological Behaviour of Hydroxyapatite Bioceramic Composites, Ceram. Int., 2017, 43, p 10442-10449CrossRefGoogle Scholar
  43. 43.
    A. Dey, A.K. Mukhopadhyay, S. Gangaharan, M.K. Sinha, and D. Basu, Characterization of Microplasma Sprayed Hydroxyapatite Coating, J. Thermal. Spray. Technol., 2009, 18, p 578-592CrossRefGoogle Scholar
  44. 44.
    F. Zhou, Y. Wang, M. Liu, C. Deng, Y. Li, and Y. Wang, Bonding Strength and Thermal Conductivity of Novel Nanostructured La2(Zr0.75Ce0.25)2O7/8YSZ Coatings, Appl. Surf. Sci., 2019, 481, p 460-465CrossRefGoogle Scholar
  45. 45.
    Y. Chen and X. Miao, Thermal and Chemical Stability of Fluorohydroxyapatite Ceramics with Different Fluorine Contents, Biomaterials, 2005, 26, p 1205-1210CrossRefGoogle Scholar
  46. 46.
    K. Li, D. Hu, Y. Xie, L. Huang, and X. Zheng, Sr-Doped Nanowire Modification of Ca-Si-Based Coatings for Improved Osteogenic Activities and Reduced Inflammatory Reactions, Nanotechnology, 2018, 29, p 084001CrossRefGoogle Scholar
  47. 47.
    X. Wang, Y. Zhou, L. Xia, C. Zhao, L. Chen, D. Yi, J. Chang, L. Huang, X. Zhen, H. Zhu, Y. Xie, Y. Xu, and K. Lin, Fabrication of Nano-structured Calcium Silicate Coatings with Enhanced Stability, Bioactivity and Osteogenic and Angiogenic Activity, Coll. Surf. B. Biointer., 2015, 126, p 358-366CrossRefGoogle Scholar
  48. 48.
    H.M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, Process and Kinetics of Bonelike Apatite Formation on Sintered Hydroxyapatite in a Simulated Body Fluid, Biomaterials, 2005, 26, p 4366-4373CrossRefGoogle Scholar
  49. 49.
    T. Kokubo, Bioactive Glass Ceramics: Properties and Applications, Biomaterials, 1991, 12, p 155-163CrossRefGoogle Scholar
  50. 50.
    Y. Iimori, Y. Kameshima, K. Okada, and S. Hayashi, Comparative Study of Apatite Formation on CaSiO3 Ceramics in Simulated Body Fluids with Different Carbonate Concentrations, J. Mater. Sci. Mater. Med., 2005, 16, p 73-79CrossRefGoogle Scholar
  51. 51.
    A. Wiegand, W. Buchalla, and T. Attin, Review on Fluoride-Releasing Restorative Materials-Fluoride Release and Uptake Characteristics, Antibacterial Activity and Influence on Caries Formation, Dent. Mater., 2007, 23, p 343-362CrossRefGoogle Scholar
  52. 52.
    J.S. Joris and H.C. Amberg, Nature of Deficiency in Nonstoichiometric Hydroxyapatites. I. Catalytic Activity of Calcium and Strontium Hydroxyapatites, J. Phys. Chem., 1971, 75, p 3167-3171CrossRefGoogle Scholar

Copyright information

© ASM International 2020

Authors and Affiliations

  • Xue Yin
    • 1
  • Yu Bai
    • 1
    Email author
  • Sheng-jian Zhou
    • 1
  • Wen Ma
    • 1
  • Xue Bai
    • 1
  • Wei-dong Chen
    • 1
  1. 1.School of Materials Science and EngineeringInner Mongolia University of Technology, Inner Mongolia Key Laboratory of Thin Film and CoatingsHohhotChina

Personalised recommendations