Advertisement

Investigation of CMAS Resistance of Sacrificial Suspension Sprayed Alumina Topcoats on EB-PVD 7YSZ Layers

  • Christoph Mikulla
  • Ravisankar Naraparaju
  • Uwe Schulz
  • Filofteia-Laura TomaEmail author
  • Maria Barbosa
  • Lars Steinberg
  • Christoph Leyens
Peer Reviewed

Abstract

Molten calcium–magnesium–aluminum–silicate (CMAS) mineral particles cause significant degradation of thermal barrier coatings (TBCs) in aero-engines. One approach to protect the TBC coating against the CMAS attack is the application of a sacrificial coating on top of the TBC coating. In this work, Al2O3 coatings were deposited on EB-PVD 7YSZ layers using suspension plasma spraying (SPS) and suspension high velocity oxy-fuel spraying (SHVOF), in order to produce sacrificial topcoats with two different microstructures and porosity levels. The coating systems were tested under CMAS attack with one natural volcanic ash and two artificial CMAS powders by conducting infiltration tests at 1250 °C in the time intervals between 5 min and 10 h. It was found that the porosity and morphology of suspension sprayed alumina topcoats, the chemical composition of the deposits and the infiltration conditions strongly influence the CMAS infiltration, reaction kinetics and formation of the reaction products. While the porous SPS coatings offer limited resistance against CMAS infiltration, the dense SHVOF coatings show promising CMAS sealing behavior. Among the formed reaction products, only (Fe, Mg) Al spinel acted as an efficient barrier against CMAS infiltration. However, the formation of uniform spinel layers strongly depends on the pore morphology of the sacrificial coating and the CMAS chemistry.

Keywords

7YSZ Al2O3 CMAS EB-PVD sacrificial coating suspension spraying thermal barrier coatings 

Notes

Acknowledgments

The authors express their gratitude to J. Brien, A. Handwerk and D. Peters from DLR Cologne for producing of the EB-PVD 7YSZ layers, as well as for technical support and advisory. The work was performed in the Framework of the Research Project DFG No. SCHU 1372/5 1, LE1373/34-1 funded by DFG-Deutsche Forschungsgemeinschaft (German Research Foundation). The authors acknowledge the financial support.

References

  1. 1.
    D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-902CrossRefGoogle Scholar
  2. 2.
    C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91CrossRefGoogle Scholar
  3. 3.
    A.F. Renteria, B. Saruhan, U. Schulz, H.J. Raetzer-Scheibe, J. Haug, and A. Wiedemann, Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs, Surf. Coat. Technol., 2006, 201(6), p 2611-2620CrossRefGoogle Scholar
  4. 4.
    S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 903-910CrossRefGoogle Scholar
  5. 5.
    R. Naraparaju, U. Schulz, P. Mechnich, P. Döbber, and F. Seidel, Degradation Study of 7 wt.% Yttria Stabilised Zirconia (7YSZ) Thermal Barrier Coatings on Aero-Engine Combustion Chamber Parts Due to Infiltration by Different CaO-MgO-Al2O3-SiO2 Variants, Surf. Coat. Technol., 2014, 260, p 73-81CrossRefGoogle Scholar
  6. 6.
    R. Naraparaju, M. Huttermann, U. Schulz, and P. Mechnich, Tailoring the EB-PVD Columnar Microstructure to Mitigate the Infiltration of CMAS in 7YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2017, 37(1), p 261-270CrossRefGoogle Scholar
  7. 7.
    R. Naraparaju, P. Mechnich, U. Schulz, and G.C.M. Rodriguez, The Accelerating Effect of CaSO4 Within CMAS (CaO-MgO-Al2O3-SiO2) and Its Effect on the Infiltration Behavior in EB-PVD 7YSZ, J. Am. Ceram. Soc., 2016, 99(4), p 1398-1403CrossRefGoogle Scholar
  8. 8.
    C.G. Levi, J.W. Hutchinson, M.H. Vidal-Setif, and C.A. Johnson, Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits, MRS Bull., 2012, 37(10), p 932-941CrossRefGoogle Scholar
  9. 9.
    R. Naraparaju, J.J.G. Chavez, P. Niemeyer, K.U. Hess, W.J. Song, D.B. Dingwell, S. Lokachari, C.V. Ramana, and U. Schulz, Estimation of CMAS Infiltration Depth in EB-PVD TBCs: A New Constraint Model Supported with Experimental Approach, J. Eur. Ceram. Soc., 2019, 39(9), p 2936-2945CrossRefGoogle Scholar
  10. 10.
    R. Naraparaju, J.J.G. Chavez, U. Schulz, and C.V. Ramana, Interaction and Infiltration Behavior of Eyjafjallajokull, Sakurajima Volcanic Ashes and a Synthetic CMAS Containing FeO with/in EB-PVD ZrO2-65 wt.% Y2O3 Coating at High Temperature, Acta Mater., 2017, 136, p 164-180CrossRefGoogle Scholar
  11. 11.
    M.A. Rivera-Gil, J. Gomez-Chavez, C.V. Ramana, R. Naraparaju, U. Schulz, and J. Munoz-Saldana, High Temperature Interaction of Volcanic Ashes with 7YSZ TBC’s Produced by APS: Infiltration Behavior and Phase Stability, Surf. Coat. Technol., 2019, 378, p 124915CrossRefGoogle Scholar
  12. 12.
    W.J. Song, Y. Lavallee, K.U. Hess, U. Kueppers, C. Cimarelli, and D.B. Dingwell, Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions, Nat. Commun., 2016, 7, p 10795.  https://doi.org/10.1038/ncomms10795 CrossRefGoogle Scholar
  13. 13.
    P. Mohan, B. Yao, T. Patterson, and Y.H. Sohn, Electrophoretically Deposited Alumina as Protective Overlay for Thermal Barrier Coatings against CMAS Degradation, Surf. Coat. Technol., 2009, 204(6), p 797-801CrossRefGoogle Scholar
  14. 14.
    S. Krämer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576-583CrossRefGoogle Scholar
  15. 15.
    U. Schulz and W. Braue, Degradation of La2Zr2O7 and Other Novel EB-PVD Thermal Barrier Coatings by CMAS (CaO-MgO-Al2O3-SiO2) and Volcanic Ash Deposits, Surf. Coat. Technol., 2013, 235, p 165-173CrossRefGoogle Scholar
  16. 16.
    A.K. Rai, R.S. Bhattacharya, D.E. Wolfe, and T.J. Eden, CMAS-Resistant Thermal Barrier Coatings (TBC), Int. J. Appl. Ceram. Technol., 2010, 7(5), p 662-674CrossRefGoogle Scholar
  17. 17.
    X.-F. Zhang, K.-S. Zhou, W. Xu, B.-Y. Chen, J.-B. Song, and M. Liu, In Situ Synthesis of α-Alumina Layer on Thermal Barrier Coating for Protection Against CMAS (CaO-MgO-Al2O3-SiO2) Corrosion, Surf. Coat. Technol., 2015, 261, p 54-59CrossRefGoogle Scholar
  18. 18.
    R. Naraparaju, R.P. Pubbysetty, P. Mechnich, and U. Schulz, EB-PVD Alumina (Al2O3) as a Top Coat on 7YSZ TBCs against CMAS/VA Infiltration: deposition and Reaction Mechanisms, J. Eur. Ceram. Soc., 2018, 38(9), p 3333-3346CrossRefGoogle Scholar
  19. 19.
    L.-M. Berger, F.-L. Toma, and A. Potthoff, Thermal Spraying with Suspensions: An Economic Spray Process, Therm. Spray Bull., 2013, 6(2), p 98-101Google Scholar
  20. 20.
    F.-L. Toma, A. Potthoff, L.-M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray. Technol., 2015, 24(7), p 1143-1152CrossRefGoogle Scholar
  21. 21.
    A. Potthoff, R. Kratzsch, M. Barbosa, N. Kulissa, O. Kunze, and F.L. Toma, Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying, J. Therm. Spray. Technol., 2018, 27(4), p 710-717CrossRefGoogle Scholar
  22. 22.
    M. Barbosa, F.-L. Toma, D. Beitelschmidt, O. Ligabue, S. Bursich, and L. Tagliaferri, Suspension sprayed YSZ thermal barrier coatings: road to industrial application, ITSC 2018—Proceedings of the International Thermal Spray Conference, F. Azarmi, T. Eden, T. Hussain, Y.-C. Lau, H. Li, K. Shinoda, F.-L. Toma, and J. Veilleux, Ed., ASM International, Orlando, 2018, p 113-119Google Scholar
  23. 23.
    L. Steinberg, C. Mikulla, R. Naraparaju, F.-L. Toma, H. Großmann, U. Schulz, and C. Leyens, Erosion Resistance of CMAS Infiltrated Sacrificial Suspension Sprayed Alumina Top Layer on EB-PVD 7YSZ Coatings, Wear, 2019, 438-439, p 203064CrossRefGoogle Scholar
  24. 24.
    S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167-3175CrossRefGoogle Scholar
  25. 25.
    E.M. Levin, C.R. Robbins, and H.F. McMurdie, in Phase Diagrams for Ceramists, Vol. I, The American Ceramic Society, Columbus, OH, 1964, p 210, 219, 246Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Christoph Mikulla
    • 1
  • Ravisankar Naraparaju
    • 1
  • Uwe Schulz
    • 1
  • Filofteia-Laura Toma
    • 2
    Email author
  • Maria Barbosa
    • 2
  • Lars Steinberg
    • 3
  • Christoph Leyens
    • 2
    • 3
  1. 1.Institute of Materials ResearchGerman Aerospace Center (DLR)CologneGermany
  2. 2.Fraunhofer Institute for Material and Beam Technology (IWS)DresdenGermany
  3. 3.Institute of Materials ScienceTechnische Universität Dresden (TUD)DresdenGermany

Personalised recommendations