Advertisement

Feasibility Study of an Adaptive-Pressure Plasma Coating Process—Part 1: Model Description

  • Dmitrii Ivchenko
  • Gilles MariauxEmail author
  • Armelle Vardelle
  • Simon Goutier
  • Tatiana E. Itina
  • Pascal André
Peer Reviewed
  • 34 Downloads

Abstract

Thermal barrier coatings for gas turbine engines are mainly produced by electron beam physical vapor deposition or atmospheric plasma spray depending on the thermomechanical loading of engine components. This study deals with the numerical design of a two-step thermal plasma-aided physical vapor deposition process capable of efficiently evaporating the coating material processed in the plasma jet and of producing a strain-tolerant coating microstructure from vapor phase condensation. The system involved a high-pressure chamber and a low-pressure chamber connected by an expansion nozzle. The objective was to achieve the highest deposition efficiency for a given plasma specific enthalpy. The numerical simulations based on computational fluid dynamics and direct simulation Monte Carlo models projected the effect of the process geometry and operating conditions on the gas flow fields, powder vaporization efficiency and nucleation/growth phenomena in the gas phase. For a targeted powder feed rate, they allowed to determine the length of the high-pressure chamber, the diameter of the expansion nozzle and other dimensions of the deposition system. The expansion nozzle that linked the two chambers was the crucial component of the process, and the predictions made it possible to select the geometry and process operating parameters that avoided its clogging and/or melting.

Keywords

CFD DSMC numerical simulation nucleation and growth PS-PVD 

Notes

Acknowledgments

The authors would like to thank the Région Limousin (later merged into the Région Nouvelle-Aquitaine) for providing financial support.

References

  1. 1.
    M.F. Smith, A.C. Hall, J.D. Fleetwood, and P. Meyer, Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community, Coatings, 2011, 1(2), p 117-132CrossRefGoogle Scholar
  2. 2.
    E. Muehlberger, Method of forming uniform thin coatings on large substrates, US, US5853815A, 1998Google Scholar
  3. 3.
    G. Mauer, A. Hospach, and R. Vaßen, Process Development and Coating Characteristics of Plasma Spray-PVD, Surf. Coat. Technol., 2013, 220, p 219-224CrossRefGoogle Scholar
  4. 4.
    K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVDTM, J. Therm. Spray Technol., 2009, 19(1–2), p 502-509Google Scholar
  5. 5.
    K. von Niessen and M. Gindrat, Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743CrossRefGoogle Scholar
  6. 6.
    B.J. Harder, D. Zhu, M.P. Schmitt, and D.E. Wolfe, Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2017, 26(6), p 1052-1061CrossRefGoogle Scholar
  7. 7.
    E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010CrossRefGoogle Scholar
  8. 8.
    A. Anwaar, L. Wei, Q. Guo, B. Zhang, and H. Guo, Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings, J. Therm. Spray. Technol., 2017, 26(8), p 1810-1822CrossRefGoogle Scholar
  9. 9.
    W. He, G. Mauer, M. Gindrat, R. Wäger, and R. Vaßen, Investigations on the Nature of Ceramic Deposits in Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2016, 26(1–2), p 83-92Google Scholar
  10. 10.
    G. Mauer, Plasma Characteristics and Plasma-Feedstock Interaction Under PS-PVD Process Conditions, Plasma Chem. Plasma Process., 2014, 34(5), p 1171-1186CrossRefGoogle Scholar
  11. 11.
    Q.-Y. Chen, X.-Z. Peng, G.-J. Yang, C.-X. Li, and C.-J. Li, Characterization of Plasma Jet in Plasma Spray-Physical Vapor Deposition of YSZ Using a < 80 kW Shrouded Torch Based on Optical Emission Spectroscopy, J. Therm. Spray. Technol., 2015, 24(6), p 1038-1045CrossRefGoogle Scholar
  12. 12.
    V.A. Nemchinsky and M. Shigeta, Simple Equations to Describe Aerosol Growth, Modell. Simul. Mater. Sci. Eng., 2012, 20(4), p 045017CrossRefGoogle Scholar
  13. 13.
    M.A. Gallis, J.R. Torczynski, S.J. Plimpton, D.J. Rader, and T. Koehle, Direct Simulation Monte Carlo: The Quest for Speed, Proceedings of the 29th Rarefied Gas Dynamics (RGD) Symposium, J. Fan, Ed., July 13–18, 2014 (Xi’an, China), AIP Publishing, 2014, p 27-36Google Scholar
  14. 14.
    SPARTA Direct Simulation Monte Carlo Simulator, https://sparta.sandia.gov. Accessed 7 Jul 2018
  15. 15.
    P.C. Huang, J. Hebeylein, and E. Pfender, A two-fluid model of turbulence for a thermal plasma jet, Plasma Chem. Plasma Process., 1995, 15(1), p 25-46CrossRefGoogle Scholar
  16. 16.
    K. Bobzin, M. Öte, M. A. Knoch, I. Alkhasli, U. Reisgen, O. Mokrov, and O. Lisnyi, Simulation of the Particle Melting Degree in Air Plasma Spraying, J. Phys.: Conf. Ser., 2017, 825, p 012002Google Scholar
  17. 17.
    M. De Sousa, “Contribution to solar-grade oxidized silicon waste purification using a thermal plasma based process,” Ph.D. Thesis, Université de Limoges, 2014 (in French)Google Scholar
  18. 18.
    B. Vautherin, M.-P. Planche, R. Bolot, A. Quet, L. Bianchi, and G. Montavon, Vapors and Droplets Mixture Deposition od Metallic Coatings by Very Low Pressure Plasma Spraying, J. Therm. Spray Technol., 2014, 23(4), p 596-608CrossRefGoogle Scholar
  19. 19.
    B. Jodoin, M. Gindrat, J.-L. Dorier, C. Hollenstein, M. Loch, and G. Barbezat, Modelling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 716–720Google Scholar
  20. 20.
    M.-J. Liu, K.-J. Zhang, Q. Zhang, M. Zhang, G.-J. Yang, C.-X. Li, and C.-J. Li, Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition, Appl. Surf. Sci., 2019, 441, p 950-959CrossRefGoogle Scholar
  21. 21.
    S. Chapman, T.G. Cowling, and D. Burnett, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, 1990Google Scholar
  22. 22.
    K. Sinha, K. Mahesh, and G.V. Candler, Modeling shock unsteadiness in shock/turbulence interaction, Phys. Fluids, 2003, 15(8), p 2290-2297CrossRefGoogle Scholar
  23. 23.
    S.E. Selezneva, M.I. Boulos, M.C.M. van de Sanden, R. Engeln, and D.C. Schram, Stationary supersonic plasma expansion: continuum fluid mechanics versus direct simulation Monte Carlo method, J. Phys. D: Appl. Phys., 2002, 35(12), p 1362-1372CrossRefGoogle Scholar
  24. 24.
    T.M. Rodgers, H. Zhao, and H.N.G. Wadley, Vapor deposition on doublet airfoil substrates: Coating thickness control, J. Vac. Sci. Technol., A, 2015, 33(6), p 061509CrossRefGoogle Scholar
  25. 25.
    D. Ivchenko, T. Zhang, G. Mariaux, A. Vardelle, S. Goutier, and T.E. Itina, On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions, J. Therm. Spray Technol., 2017, 27(1–2), p 3-13Google Scholar
  26. 26.
    D. Ivchenko, “Modeling and design of a physical vapor deposition process assisted by thermal plasma (PS-PVD),” Ph.D. Thesis, Université de Limoges, 2018Google Scholar
  27. 27.
    P. André, M. Abbaoui, A. Augeard, P. Desprez, and T. Singo, Study of Condensed Phases, of Vaporization Temperatures of Aluminum Oxide and Aluminum, of Sublimation Temperature of Aluminum Nitride and Composition in an Air Aluminum Plasma, Plasma Chem. Plasma Process., 2016, 36(4), p 1161-1175CrossRefGoogle Scholar
  28. 28.
    G. Mauer, D. Ivchenko, G. Mariaux, A. Vardelle, S. Goutier, T. Itina, C. Zhao, and R. Vassen, “Plasma spraying at very low pressure (VLPPS): Model development and experimental validation beyond continuum conditions,” presented at the 15th International High-Tech Plasma Processes Conference (HTPP15), Toulouse, 2018Google Scholar
  29. 29.
    G. Mariaux, E. Legros, and A. Vardelle, Modeling of coating formation and heat flux to substrate by particles and plasma jet in plasma spraying, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 895–904Google Scholar
  30. 30.
    P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals, Springer, US, 2014CrossRefGoogle Scholar
  31. 31.
    P. Fuzet, “Etude expérimentale de l’ablation de matériaux thermo-ablatifs sous impacts d’alumine liquide, modélisation et développement d’un moyen d’essai,” Ph.D. Thesis, Université de Limoges, 2014 (in French)Google Scholar
  32. 32.
    X. Chen and E. Pfender, Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma, Plasma Chem. Plasma Process., 1983, 3(1), p 97-113CrossRefGoogle Scholar
  33. 33.
    X. Chen and E. Pfender, Behavior of small particles in a thermal plasma flow, Plasma Chem. Plasma Process., 1983, 3(3), p 351-366CrossRefGoogle Scholar
  34. 34.
    S.L. Girshick and C.-P. Chiu, Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor, J. Chem. Phys., 1990, 93(2), p 1273-1277CrossRefGoogle Scholar
  35. 35.
    G. Mauer and R. Vaßen, Conditions for nucleation and growth in the substrate boundary layer at plasma spray-physical vapor deposition (PS-PVD), Surf. Coat. Technol., 2018, 371, p 417-427CrossRefGoogle Scholar
  36. 36.
    G.V. Samsonov and G.V. Samsonov, The Oxide Handbook, Springer, US, 1973CrossRefGoogle Scholar
  37. 37.
    A. Stoklosa, Molar Volume, Ionic Radii in Stoichiometric and Nonstoichiometric Metal Oxides, Stoichiometry and Materials Science - When Numbers Matter, A. Innocenti, Ed., IntechOpen Ltd., 2012, p 219–244Google Scholar
  38. 38.
    M. Rösner-Kuhn, W.H. Hofmeister, G. Kuppermann, R.J. Bayuzick, and M.G. Frohberg, Investigations of the influence of oxygen on the surface tension of zirconium by the oscillating drop technique, Surf. Sci., 1999, 443(3), p 159-164CrossRefGoogle Scholar
  39. 39.
    S.K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, 2000Google Scholar
  40. 40.
    J. Welty, C.E. Wicks, G.L. Rorrer, and R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, 5th ed., Wiley, 2007Google Scholar
  41. 41.
    R.L. Williamson, J.R. Fincke, and C.H. Chang, A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying, Plasma Chem. Plasma Process., 2000, 20(3), p 299-324CrossRefGoogle Scholar
  42. 42.
    G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2012, 22(2-3), p 83-89Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Dmitrii Ivchenko
    • 1
  • Gilles Mariaux
    • 1
    Email author
  • Armelle Vardelle
    • 1
  • Simon Goutier
    • 1
  • Tatiana E. Itina
    • 2
  • Pascal André
    • 3
  1. 1.University of Limoges, CNRS, The Institute of Research for Ceramics (IRCER), UMR 7315LimogesFrance
  2. 2.Laboratoire Hubert CurienUniversity of Lyon, UJM-Saint-Etienne, CNRS, UMR 5516St EtienneFrance
  3. 3.University of Clermont Auvergne, CNRS, LPC, UMR 6533Clermont-FerrandFrance

Personalised recommendations