Mechanical Properties and Thermal Shock Resistance of 8YSZ-Al2O3 Composite Coatings with Different Thicknesses

  • Fazhang Lu
  • Wenzhi HuangEmail author
  • Haitao LiuEmail author
Peer Reviewed


The mechanical properties and thermal shock resistance of plasma-sprayed 8YSZ-Al2O3 composite coatings with different thicknesses have been analyzed. At a thickness of 330 μm, the Young’s modulus of the coating surface increased from 96.54 to 121.39 GPa and the surface hardness from 6.63 to 9.14 GPa when the Al2O3 content was varied from 10 to 40 wt.%. Adding more alumina in the coating resulted in a change in the coating surface residual stress from tensile (48.8 MPa) to compressive (−115.9 MPa), while the thermal shock resistance at 1100 °C decreased from 162 to 56 cycles. Moreover, at given Al2O3 content, the thermal shock resistance of the coating decreased drastically when its thickness was increased, which can be attributed to the enhanced Young’s modulus and hardness near the bond coat/ceramic coating interface. An increase in the ceramic thickness resulted in a significant stress gradient as well as strain energy in the direction of the coating thickness, bringing about high thermal stress during thermal shock testing. The horizontal crack propagation caused by thermal stress in the interface area could be the main reason for coating failure.


8YSZ-Al2O3 composite coatings plasma spray thermal shock resistance failure analysis mechanical properties residual stress 



This work was financially supported by the project supported by the Natural Science Foundation of Hunan Province (grant no. 2019JJ40337).


  1. 1.
    F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, High-Temperature Performance of Alumina-Zirconia Composite Coatings Containing Amorphous Phases, Adv. Funct. Mater., 2011, 21, p 4143-4151CrossRefGoogle Scholar
  2. 2.
    F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Structural Considerations in Plasma Spraying of the Alumina-Zirconia Composite, Surf. Coat. Technol., 2011, 205, p 5437-5443CrossRefGoogle Scholar
  3. 3.
    F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Amorphous and Crystalline Phase Formation during Suspension Plasma Spraying of the Alumina-Zirconia Composite, J. Eur. Ceram. Soc., 2011, 31, p 2903-2913CrossRefGoogle Scholar
  4. 4.
    F. Tarasi, M. Medraj, A. Dolatabadi, R.S. Lima, and C. Moreau, Thermal Cycling of Suspension Plasma Sprayed Alumina-YSZ Coatings Containing Amorphous Phases, J. Am. Ceram. Soc., 2012, 95, p 2614-2621CrossRefGoogle Scholar
  5. 5.
    F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Enhancement of Amorphous Phase Formation in Alumina-YSZ Coatings Deposited by Suspension Plasma Spray Process, Surf. Coat. Technol., 2013, 220, p 191-198CrossRefGoogle Scholar
  6. 6.
    J. Suffner, H. Sieger, H. Hahn, S. Dosta, I.G. Cano, J.M. Guilemany, P. Klimczyk, and L. Jaworska, Microstructure and Mechanical Properties of Near-Eutectic ZrO2-60 wt.% Al2O3 Produced By Quenched Plasma Spraying, Mater. Sci. Eng. A, 2009, 506, p 180-186CrossRefGoogle Scholar
  7. 7.
    J. Suffner, H. Hahn, S. Dosta, I.G. Cano, and J.M. Guilemany, Influence of Liquid Nitrogen Quenching on the Evolution of Metastable Phases during Plasma Spraying of (ZrO2-5 wt.% Y2O3)-20 wt.% Al2O3 Coatings, Surf. Coat. Technol., 2009, 204, p 149-156CrossRefGoogle Scholar
  8. 8.
    K. He, J.J. Chen, W.X. Weng, C.C. Li, and Q. Li, Microstructure and Mechanical Properties of Plasma Sprayed Al2O3-YSZ Composite Coatings, Vacuum, 2018, 151, p 209-220CrossRefGoogle Scholar
  9. 9.
    B. Liang, H.L. Liao, C.X. Ding, and C. Coddet, Nanostructured Zirconia-30 vol.% Alumina Composite Coatings Deposited by Atmospheric Plasma Spraying, Thin Solid Films, 2005, 484, p 225-231CrossRefGoogle Scholar
  10. 10.
    B. Liang and C.X. Ding, Thermal Shock Resistances of Nanostructured and Conventional Zirconia Coatings Deposited by ATMOSPHERIC PLASMA SPRAYING, Surf. Coat. Technol., 2005, 197, p 185-192CrossRefGoogle Scholar
  11. 11.
    B. Liang, G. Zhang, H.L. Liao, C. Coddet, and C.X. Ding, Friction and Wear Behavior of ZrO2-Al2O3 Composite Coatings Deposited by Air Plasma Spraying: Correlation with Physical and Mechanical Properties, Surf. Coat. Technol., 2009, 203, p 3235-3242CrossRefGoogle Scholar
  12. 12.
    Q.H. Yu, C.G. Zhou, H.Y. Zhang, and F. Zhao, Thermal Stability of Nanostructured 13 wt.% Al2O3-8 wt.% Y2O3-ZrO2 Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2010, 30, p 889-897CrossRefGoogle Scholar
  13. 13.
    Q.H. Yu, A. Rauf, and C.G. Zhou, Microstructure and Thermal Properties of Nanostructured 4 wt.% Al2O3-YSZ Coatings Produced by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2010, 19, p 1294-1300CrossRefGoogle Scholar
  14. 14.
    L. Jin, L.Y. Ni, Q.H. Yu, A. Rauf, and C.G. Zhou, Thermal Cyclic Life and Failure Mechanism of Nanostructured 13 wt.% Al2O3 Doped YSZ Coating Prepared by Atmospheric Plasma Spraying, Ceram. Int., 2012, 38, p 2983-2989CrossRefGoogle Scholar
  15. 15.
    A. Keyvani, M. Saremi, and M.H. Sohi, Microstructural Stability of Zirconia-Alumina Composite Coatings during Hot Corrosion Test at 1050 °C, J. Alloys Compd., 2010, 506, p 103-108CrossRefGoogle Scholar
  16. 16.
    A. Keyvani, M. Saremi, and M.H. Sohi, Oxidation Resistance of YSZ-Alumina Composites Compared to Normal YSZ TBC Coatings at 1100 °C, J. Alloys Compd., 2011, 509, p 8370-8377CrossRefGoogle Scholar
  17. 17.
    T.G. Wang, S.S. Zhao, W.G. Hua, J.B. Li, J. Gong, and C. Sun, Estimation of Residual Stress and Its Effects on the Mechanical Properties of Detonation Gun Sprayed WC-Co Coatings, Mater. Sci. Eng. A, 2010, 527, p 454-461CrossRefGoogle Scholar
  18. 18.
    J.A.M. Camargo, H.J. Cornelis, V.M.O.H. Cioffi, and M.Y.P. Costa, Coating Residual Stress Effects on Fatigue Performance of 7050-T7451 Aluminum Alloy, Surf. Coat. Technol., 2007, 201, p 9448-9455CrossRefGoogle Scholar
  19. 19.
    R.T.R. McGrann, D.J. Greving, J.R. Shadley, E.F. Rybicki, T.L. Kruecke, and B.E. Bodger, The Effect of Coating Residual Stress on the Fatigue Life of Thermal Spray-Coated Steel and Aluminum, Surf. Coat. Technol., 1998, 108, p 59-64CrossRefGoogle Scholar
  20. 20.
    M. Andritschky, I. Cunha, and P. Alpuim, Thermal Stability Zirconia/Alumina Thin Coatings Produced by Magnetron Sputtering, Surf. Coat. Technol., 1997, 144, p 94-95Google Scholar
  21. 21.
    M. Wenzelburger, M. Escribano, and R. Gadow, Modeling of Thermally Sprayed Coatings on Light Metal Substrates: Layer Growth and Residual Stress Formation, Surf. Coat. Technol., 2004, 180, p 429-435CrossRefGoogle Scholar
  22. 22.
    X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu, An Analytical Model for Predicting Thermal Residual Stresses in Multilayer Coating Systems, Thin Solid Films, 2005, 488, p 274-282CrossRefGoogle Scholar
  23. 23.
    S. Nath, I. Manna, A.K. Jha, S.C. Sharma, S.K. Pratihar, and J.D. Majumdar, Thermophysical Behavior of Thermal Sprayed Yttria Stabilized Zirconia Based Composite Coatings, Ceram. Int., 2017, 43, p 11204-11217CrossRefGoogle Scholar
  24. 24.
    A. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution-Precursor Plasma Spray, Mater. Sci. Eng. A, 2005, 405, p 313-320CrossRefGoogle Scholar
  25. 25.
    H.B. Guo, R. Vaßen, and D. Stove, Thermophysical Properties and Thermal Cycling Behavior of Plasma Sprayed Thick Thermal Barrier Coatings, Surf. Coat. Technol., 2005, 192, p 48-56CrossRefGoogle Scholar
  26. 26.
    A. Scrivani, G. Rizzi, U. Bardi, C. Giolli, M.M. Miranda, S. Ciattini, A. Fossati, and F. Borgioli, Thermal Fatigue Behavior of Thick and Porous Thermal Barrier Coatings Systems, J. Therm. Spray Technol., 2007, 16, p 816-821CrossRefGoogle Scholar
  27. 27.
    P.-H. Lee, S.-Y. Lee, J.-Y. Kwon, S.-W. Myoung, J.-H. Lee, Y.-G. Jung, H. Cho, and U. Paik, Thermal Cycling Behavior and Interfacial Stability in Thick Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 1250-1255CrossRefGoogle Scholar
  28. 28.
    C.M. Weyant, J. Almer, and K.T. Faber, Through-Thickness Determination of Phase Composition and Residual Stresses in Thermal Barrier Coatings Using High-Energy x-rays, Acta Mater., 2010, 58, p 943-951CrossRefGoogle Scholar
  29. 29.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284CrossRefGoogle Scholar
  30. 30.
    F. Jing, X. Ren, X. Wang, Z. Rong, and P. Wei, Thermal Conductivity of Ytterbia-Stabilized Zirconia, Scr. Mater., 2012, 66, p 41-44CrossRefGoogle Scholar
  31. 31.
    X. Zhao and P. Xiao, Residual Stresses in Thermal Barrier Coatings Measured by Photoluminescence Piezospectroscopy and Indentation Technique, Surf. Coat. Technol., 2006, 201, p 1124-1131CrossRefGoogle Scholar
  32. 32.
    J.G. Zhu, H.M. Xie, Z.X. Hu, P.W. Chen, and Q.M. Zhang, Cross-Sectional Residual Stresses in Thermal Spray Coatings Measured by Moiré Interferometry and Nano-indentation Technique, J. Therm. Spray Technol., 2012, 21, p 810-817CrossRefGoogle Scholar
  33. 33.
    Y. Yung-Chin and C. Edward, Biaxial Residual Stress States of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate, Biomaterials, 2001, 22, p 1327-1337CrossRefGoogle Scholar
  34. 34.
    Y. Yung-Chin and C. Edward, Measurements of Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy, Surf. Coat. Technol., 2005, 190, p 122-131CrossRefGoogle Scholar
  35. 35.
    Q. Chen, W.G. Mao, Y.C. Zhou, and C. Lu, Effect of Young’s Modulus Evolution on Residual Stress Measurement of Thermal Barrier Coatings by x-ray Diffraction, Appl. Surf. Sci., 2010, 256, p 7311-7315CrossRefGoogle Scholar
  36. 36.
    J.G. Thakare, R.S. Mulik, and M.M. Mahapatra, Effect of Carbon Nanotubes and Aluminum Oxide on the Properties of a Plasma Sprayed Thermal Barrier Coating, Ceram. Int., 2018, 44, p 438-451CrossRefGoogle Scholar
  37. 37.
    J.G. Thakare, C. Pandey, R.S. Mulika, and M.M. Mahapatra, Mechanical Property Evaluation of Carbon Nanotubes Reinforced Plasma Sprayed YSZ-Alumina Composite Coating, Ceram. Int., 2018, 44, p 6980-6989CrossRefGoogle Scholar
  38. 38.
    J.G. Thakare, R.S. Mulik, M.M. Mahapatra, and R. upadhyaya, Hot Corrosion Behavior of Plasma Sprayed 8YSZ-Alumina-CNT Composite Coating in Na2SO4-60% V2O5 Molten Salt Environment, Ceram. Int., 2018, 44, p 21533-21545CrossRefGoogle Scholar
  39. 39.
    A.T. Tran, M.M. Hyland, K. Shinoda, and S. Sampath, Influence of Substrate Surface Conditions on the Deposition and Spreading of Molten Droplets, Thin Solid Films, 2011, 59, p 2445-2456CrossRefGoogle Scholar
  40. 40.
    S. Goutier, M. Vardelle, and P. Fauchais, Comparison between Metallic and Ceramic Splats: Influence of Viscosity and Kinetic Energy on the Particle Flattening, Surf. Coat. Technol., 2013, 235, p 657-668CrossRefGoogle Scholar
  41. 41.
    J.D. Osorio, J.P. Hernández-Ortiz, and A. Toro, Microstructure Characterization of Thermal Barrier Coating Systems after Controlled Exposure to a High Temperature, Ceram. Int., 2014, 40, p 4663-4671CrossRefGoogle Scholar
  42. 42.
    X.-J. Lu, X. Wang, and P. Xiao, Nanoindentation and Residual Stress Measurements of Yttria-Stablized Zirconia Composite Coatings Produced by Electrophoretic Deposition, Thin Solid Films, 2006, 494, p 223-227CrossRefGoogle Scholar
  43. 43.
    X. Wang and P. Xiao, Residual Stresses and Constrained Sintering of YSZ/AlO Composite Coatings, Acta Mater., 2004, 52, p 2591-2603CrossRefGoogle Scholar
  44. 44.
    W.Z. Huang, Y. Zhao, X.Z. Fan, X.S. Meng, Y. Wang, X.L. Cai, X.Q. Cao, and Z. Wang, Effect of Bond Coats on Thermal Shock Resistance of Thermal Barrier Coatings Deposited onto Polymer Matrix Composites via Air Plasma Spray Process, J. Therm. Spray Technol., 2013, 22, p 918-925CrossRefGoogle Scholar
  45. 45.
    J.S. Wang, J.B. Sun, H. Zhang, S.J. Dong, J.N. Jiang, L.H. Deng, X. Zhou, and X.Q. Cao, Effect of Spraying Power on Microstructure and Property of Nanostructured YSZ Thermal Barrier Coatings, J. Alloys Compd., 2018, 730, p 471-482CrossRefGoogle Scholar
  46. 46.
    J. Zhang, Y. Yin, L. Jing, and Z. Hong, Fabrication and Properties of Fe3Al-Al2O3 Graded Coatings, J. Mater. Process. Technol., 2003, 134, p 206-209CrossRefGoogle Scholar
  47. 47.
    C.C. Wang, K.Z. Li, X.H. Shi, C.X. Huo, Q.C. He, and Y.D. Zhang, Effect of Spraying Power on Oxidation Resistance and Mechanical Properties of Plasma Sprayed La-Mo-Si Coating, Surf. Coat. Technol., 2017, 311, p 138-150CrossRefGoogle Scholar
  48. 48.
    Y. Wang, Y. Bai, T. Yuan, H.Y. Chen, Y.X. Kang, W.J. Shi, X.L. Song, and B.Q. Li, Failure Analysis of Fine-Lamellar Structured YSZ Based Thermal Barrier Coatings with Submicro/Nano-Grains, Surf. Coat. Technol., 2017, 319, p 95-103CrossRefGoogle Scholar
  49. 49.
    G.R. Li, B. Cheng, G.J. Yang, and C.X. Li, Strain-Induced Stiffness-Dependent Structural Changes and the Associated Failure Mechanism in TBCs, J. Eur. Ceram. Soc., 2017, 37, p 3609-3621CrossRefGoogle Scholar
  50. 50.
    S. Mahade, N. Curry, K.P. Jonnalagadda, R.L. Peng, N. Markocsan, and P. Nylén, Influence of YSZ Layer Thickness on the Durability of Gadolinium Zirconate/YSZ Double-Layered Thermal Barrier Coatings Produced by Suspension Plasma, Surf. Coat. Technol., 2019, 357, p 456-465CrossRefGoogle Scholar
  51. 51.
    U. Saral and N. Toplan, Thermal Cycle Properties of Plasma Sprayed YSZ/Al2O3 Thermal Barrier Coatings, Surf. Eng., 2009, 25, p 541-547CrossRefGoogle Scholar
  52. 52.
    W. Zhu, Z.B. Zhang, L. Yang, Y.C. Zhou, and Y.G. Wei, Spallation of Thermal Barrier Coatings with Real Thermally Grown Oxide Morphology under Thermal Stress, Mater. Des., 2018, 146, p 180-193CrossRefGoogle Scholar
  53. 53.
    L. Chen and G.J. Yang, Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats, J. Therm. Spray Technol., 2018, 27, p 255-268CrossRefGoogle Scholar
  54. 54.
    B. Cheng, Z.Y. Wei, L. Chen, G.J. Yang, C.X. Li, and C.J. Li, Prolong the Durability of La2Zr2O7/YSZ TBCs by Decreasing the Cracking Driving Force in Ceramic Coatings, J. Eur. Ceram. Soc., 2018, 38, p 5482-5488CrossRefGoogle Scholar
  55. 55.
    M. Collin and D. Rowcliffe, The Morphology of Thermal Cracks in Brittle Materials, J. Eur. Ceram. Soc., 2002, 22, p 435-445CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations