Effects of Powder Structure and Size on Gd2O3 Preferential Vaporization During Plasma Spraying of Gd2Zr2O7

  • Xu Chen
  • Cong-Cong Kou
  • Shan-Lin Zhang
  • Cheng-Xin Li
  • Guan-Jun Yang
  • Chang-Jiu LiEmail author
Peer Reviewed


Complex rare-earth oxide ceramics with pyrochlore structure (A2B2O7) are considered as promising candidate materials for next generation thermal barrier coatings (TBCs) due to low thermal conductivity and high phase stability. During plasma spraying, the component with a higher vapor pressure would experience preferential vaporization. In this study, Gd2Zr2O7 (GZO) powders with a hollow spherical structure in a wide range of particle size distribution were used to examine the preferential vaporization behavior of Gd2O3 during plasma spraying. Individual GZO splats were deposited to study the effect of particle size on Gd vaporization loss. The results show that almost all particles experienced Gd preferential vaporization loss that increased remarkably with the decrease in particle size. The Gd vaporization loss was significantly suppressed only when the particle size of molten droplet was larger than about 35 μm. The relationship between the Gd/Zr ratio and the droplet size reveals the significant effects of particle size and powder structure on Gd vaporization loss. It is clear that the vaporization behavior of in-flight GZO particles is dominated by molten droplet size rather than the size of feedstock powders with a porous hollow structure. The particle size effect on Gd vaporization resulted in wide distributions of Gd/Zr ratio in plasma-sprayed GZO coatings. Furthermore, it is found that after annealing at 1300 °C, the vaporization loss of Gd led to the formation of monoclinic ZrO2 from metastable pyrochlore phase in GZO coatings with inhomogeneous chemical composition.


Gd2Zr2O7 particle size plasma spraying powder structure preferential vaporization TBCs 



The present project is financially supported by National Basic Research Program (Grant No. 2012CB625104).


  1. 1.
    N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15(8), p 804-809CrossRefGoogle Scholar
  2. 2.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284CrossRefGoogle Scholar
  3. 3.
    P. Sahoo, T. Carr, R. Martin, and F. Dinh, Thermal Spray Manufacturing Issues in Coating IGT Hot Section Components, J. Therm. Spray Technol., 1998, 7(4), p 481-483CrossRefGoogle Scholar
  4. 4.
    R.W. Trice, Y.J. Su, J.R. Mawdsley, K.T. Faber, A.R. De Arellano-Lopez, H. Wang, and W. Porter, Effect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZ, J. Mater. Sci., 2002, 37(11), p 2359-2365CrossRefGoogle Scholar
  5. 5.
    C. Wang, Y. Wang, Y. Cheng, W. Huang, Z.S. Khan, X. Fan, Y. Wang, B. Zou, and X. Cao, Preparation and Thermophysical Properties of Nano-sized Ln2Zr2O7 (Ln = La, Nd, Sm, and Gd) Ceramics with Pyrochlore Structure, J. Mater. Sci., 2012, 47(10), p 4392-4399CrossRefGoogle Scholar
  6. 6.
    R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942CrossRefGoogle Scholar
  7. 7.
    Z.H. Xu, L. He, R. Mu, X.H. Zhong, Y.F. Zhang, and X.Q. Cao, Double-Ceramic-Layer Thermal Barrier Coatings of La2Zr2O7/YSZ Deposited by Electron Beam-Physical Vapor Deposition, J. Alloys Compd., 2009, 473(1–2), p 509-515CrossRefGoogle Scholar
  8. 8.
    G. Moskal, L. Swadźba, M. Hetmańczyk, B. Witala, B. Mendala, J. Mendala, and P. Sosnowy, Characterisation of the Microstructure and Thermal Properties of Nd2Zr2O7 and Nd2Zr2O7/YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2012, 32(9), p 2035-2042CrossRefGoogle Scholar
  9. 9.
    S. Mahade, R. Li, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Isothermal Oxidation Behavior of Gd2Zr2O7/YSZ Multilayered Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2016, 13(3), p 443-450CrossRefGoogle Scholar
  10. 10.
    G. Moskal, L. Swadźba, M. Hetmańczyk, B. Witala, B. Mendala, J. Mendala, and P. Sosnowy, Characterization of Microstructure and Thermal Properties of Gd2Zr2O7-Type Thermal Barrier Coating, J. Eur. Ceram. Soc., 2012, 32(9), p 2025-2034CrossRefGoogle Scholar
  11. 11.
    R.M. Leckie, S. Krämer, M. Rühle, and C.G. Levi, Thermochemical Compatibility Between Alumina and ZrO2–GdO3/2 Thermal Barrier Coatings, Acta Mater., 2005, 53(11), p 3281-3292CrossRefGoogle Scholar
  12. 12.
    G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22(5), p 646-658CrossRefGoogle Scholar
  13. 13.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, and A. Dolatabadi, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440CrossRefGoogle Scholar
  14. 14.
    G. Mauer, N. Schlegel, A. Guignard, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Plasma Spraying of Ceramics with Particular Difficulties in Processing, J. Therm. Spray Technol., 2015, 24(1–2), p 30-37Google Scholar
  15. 15.
    U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Techn., 2004, 1(4), p 302-315CrossRefGoogle Scholar
  16. 16.
    G. Mauer, D. Sebold, R. Vaßen, and D. Stöver, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J. Therm. Spray Technol., 2012, 21(3–4), p 363-371CrossRefGoogle Scholar
  17. 17.
    E. Bakan, D.E. Mack, G. Mauer, and R. Vaßen, Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior, J. Am. Ceram. Soc., 2014, 97(12), p 4045-4051CrossRefGoogle Scholar
  18. 18.
    S.-L. Zhang, T. Liu, C.-J. Li, S.-W. Yao, C.-X. Li, G.-J. Yang, and M. Liu, Atmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Mater. Chem. A, 2015, 3(14), p 7535-7553CrossRefGoogle Scholar
  19. 19.
    L.-S. Wang, S.-L. Zhang, T. Liu, C.-J. Li, C.-X. Li, and G.-J. Yang, Dominant Effect of Particle Size on the CeO2 Preferential Evaporation during Plasma Spraying of La2Ce2O7, J. Eur. Ceram. Soc., 2016, 37(4), p 1577-1585CrossRefGoogle Scholar
  20. 20.
    T. Liu, X.-T. Luo, X. Chen, G.-J. Yang, C.-X. Li, and C.-J. Li, Morphology and Size Evolution of Interlamellar Two-Dimensional Pores in Plasma-Sprayed La2Zr2O7 Coatings During Thermal Exposure at 1300 °C, J. Therm. Spray Technol., 2015, 24(5), p 739-748CrossRefGoogle Scholar
  21. 21.
    T. Liu, X. Chen, G.-J. Yang, and C.-J. Li, Properties Evolution of Plasma-Sprayed La2Zr2O7 Coating Induced by Pore Structure Evolution during Thermal Exposure, Ceram. Int., 2016, 42(14), p 15485-15492CrossRefGoogle Scholar
  22. 22.
    T. Liu, S.-L. Zhang, X.-T. Luo, G.-J. Yang, C.-X. Li, and C.-J. Li, High Heat Insulating Thermal Barrier Coating Designed with Large Two-Dimensional Inter-Lamellar Pores, J. Therm. Spray Technol., 2016, 25(1–2), p 222-230CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Xu Chen
    • 1
  • Cong-Cong Kou
    • 1
  • Shan-Lin Zhang
    • 1
  • Cheng-Xin Li
    • 1
  • Guan-Jun Yang
    • 1
  • Chang-Jiu Li
    • 1
    Email author
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations