Computational Research on Factors Affecting Particle Velocity in a Vacuum Kinetic Spray Process

  • Hyungkwon Park
  • Hansol Kwon
  • Yeonju Kim
  • Changhee LeeEmail author
Peer Reviewed


In vacuum kinetic spraying (VKS) systems, also called aerosol deposition, the particle velocity is crucial because kinetic energy determines successful deposition. However, various factors simultaneously affect particle velocity, which complicates prediction. To address this issue, the factors affecting particle velocity in the VKS process were investigated via computational simulation. The factors were analyzed in terms of particle variables (i.e., particle material, size, and shape factor) and process variables (i.e., process gases and the pressure difference between the two chambers). Consequently, how and to what extent each factor influenced particle average and impact velocity are discussed.


aerosol deposition (AD) computational fluid dynamics (CFD) particle flight particle velocity vacuum kinetic spraying (VKS) process 


Supplementary material

11666_2019_941_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 83 kb)


  1. 1.
    J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198CrossRefGoogle Scholar
  2. 2.
    D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-182Google Scholar
  3. 3.
    H.-J. Kim and S.-M. Nam, High Loading of Nanostructured Ceramics in Polymer Composite Thick Films by Aerosol Deposition, Nanoscale Res. Lett., 2012, 7(1), p 92CrossRefGoogle Scholar
  4. 4.
    Y.-H. Kim, J.-W. Lee, H.-J. Kim, Y.-H. Yun, and S.-M. Nam, Silver Metallization for Microwave Device Using Aerosol Deposition, Ceram. Int., 2012, 38, p S201-S204CrossRefGoogle Scholar
  5. 5.
    O.-Y. Kwon, H.-J. Na, H.-J. Kim, D.-W. Lee, and S.-M. Nam, Effects of Mechanical Properties of Polymer on Ceramic-Polymer Composite Thick Films Fabricated by Aerosol Deposition, Nanoscale Res. Lett., 2012, 7(1), p 261CrossRefGoogle Scholar
  6. 6.
    J.H. Lee, H.-K. Kim, S.-H. Lee, K. Choi, and Y.-H. Lee, Effect of Zn Filler for Percolative BaTiO3/Zn Composite Films Fabricated by Aerosol Deposition, Ceram. Int., 2015, 41(9), p 12153-12157CrossRefGoogle Scholar
  7. 7.
    M.-Y. Cho, D.-W. Lee, W.-J. Kim, Y.-N. Kim, S.-M. Koo, D. Lee, K.-S. Moon, and J.-M. Oh, Fabrication of TiO2/Cu Hybrid Composite Films with Near Zero TCR and High Adhesive Strength Via Aerosol Deposition, Ceram. Int., 2018, 44(15), p 18736-18742CrossRefGoogle Scholar
  8. 8.
    D.W. Lee, H.J. Kim, Y.H. Kim, Y.H. Yun, and S.M. Nam, Growth Process of α-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition, J. Am. Ceram. Soc., 2011, 94(9), p 3131-3138CrossRefGoogle Scholar
  9. 9.
    F. Cao, H. Park, G. Bae, J. Heo, and C. Lee, Microstructure Evolution of Titanium Nitride Film During Vacuum Kinetic Spraying, J. Am. Ceram. Soc., 2013, 96(1), p 40-43CrossRefGoogle Scholar
  10. 10.
    B. Daneshian and H. Assadi, Impact Behavior of Intrinsically Brittle Nanoparticles: A Molecular Dynamics Perspective, J. Therm. Spray Technol., 2014, 23(3), p 541-550CrossRefGoogle Scholar
  11. 11.
    H. Park, J. Kim, and C. Lee, Dynamic Fragmentation Process and Fragment Microstructure Evolution of Alumina Particles in a Vacuum Kinetic Spraying System, Scripta Mater., 2015, 108, p 72-75CrossRefGoogle Scholar
  12. 12.
    H. Park, J. Kwon, I. Lee, and C. Lee, Shock-Induced Plasticity and Fragmentation Phenomena During Alumina Deposition in the Vacuum Kinetic Spraying Process, Scripta Mater., 2015, 100, p 44-47CrossRefGoogle Scholar
  13. 13.
    Y. Liu, Y. Wang, X. Suo, Y. Gong, C.-J. Li, and H. Li, Impact-Induced Bonding and Boundary Amorphization of TiN Ceramic Particles During Room Temperature Vacuum Cold Spray Deposition, Ceram. Int., 2016, 42(1), p 1640-1647CrossRefGoogle Scholar
  14. 14.
    H. Park, J. Kim, S.B. Lee, and C. Lee, Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process, J. Therm. Spray Technol., 2017, 26(3), p 327-339CrossRefGoogle Scholar
  15. 15.
    H.-L. Yao, G.-J. Yang, and C.-J. Li, Molecular Dynamics Simulation and Experimental Verification for Bonding Formation of Solid-State TiO2 Nano-Particles Induced by High Velocity Collision, Ceram. Int., 2019, 45(4), p 4700-4706CrossRefGoogle Scholar
  16. 16.
    J.-H. Park, D.-S. Park, B.-D. Hahn, J.-J. Choi, J. Ryu, S.-Y. Choi, J. Kim, W.-H. Yoon, and C. Park, Effect of Raw Powder Particle Size on Microstructure and Light Transmittance of α-Alumina Films Deposited by Granule Spray in Vacuum, Ceram. Int., 2016, 42(2), p 3584-3590CrossRefGoogle Scholar
  17. 17.
    J. Exner, M. Hahn, M. Schubert, D. Hanft, P. Fuierer, and R. Moos, Powder Requirements for Aerosol Deposition of Alumina Films, Adv. Powder Technol., 2015, 26(4), p 1143-1151CrossRefGoogle Scholar
  18. 18.
    J. Exner, M. Schubert, D. Hanft, J. Kita, and R. Moos, How to Treat Powders for the Room Temperature Aerosol Deposition Method to Avoid Porous, Low Strength Ceramic Films, J. Eur. Ceram. Soc., 2019, 39(2–3), p 592-600CrossRefGoogle Scholar
  19. 19.
    H. Kwon, H. Park, and C. Lee, Roles of Particle Size Distribution in Bimodal Feedstocks on the Deposition Behavior and Film Properties in Vacuum Kinetic Spraying, J. Therm. Spray Technol., 2018, 27(5), p 857-869CrossRefGoogle Scholar
  20. 20.
    T.-C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano-and Microsize Particles, Int. J. Heat Mass Transf., 2005, 48(21–22), p 4384-4396CrossRefGoogle Scholar
  21. 21.
    H. Katanoda and K. Matsuo, Gasdynamic Simulation of Aerosol Deposition Method, Mater. Trans., 2006, 47(7), p 1620-1625CrossRefGoogle Scholar
  22. 22.
    W.-Y. Li, H. Liao, H.-T. Wang, C.-J. Li, G. Zhang, and C. Coddet, Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253(2), p 708-713CrossRefGoogle Scholar
  23. 23.
    J. Pattison, S. Celotto, A. Khan, and W. O’neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454CrossRefGoogle Scholar
  24. 24.
    S.D. Johnson, D. Schwer, D.-S. Park, Y.-S. Park, and E.P. Gorzkowski, Deposition Efficiency of Barium Hexaferrite by Aerosol Deposition, Surf. Coat. Technol., 2017, 332, p 542-549CrossRefGoogle Scholar
  25. 25.
    M. Lee, J. Park, D. Kim, S. Yoon, H. Kim, D. Kim, S. James, S. Chandra, T. Coyle, and J. Ryu, Optimization of Supersonic Nozzle Flow for Titanium Dioxide Thin-Film Coating by Aerosol Deposition, J. Aerosol Sci., 2011, 42(11), p 771-780CrossRefGoogle Scholar
  26. 26.
    K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274CrossRefGoogle Scholar
  27. 27.
    H. Park, H. Kwon, and C. Lee, Inflight Particle Behavior in the Vacuum Kinetic Spray Process, J. Therm. Spray Technol., 2017, 26(7), p 1616-1631CrossRefGoogle Scholar
  28. 28.
    D.-M. Chun, J.-O. Choi, C.S. Lee, and S.-H. Ahn, Effect of Stand-Off Distance for Cold Gas Spraying of Fine Ceramic Particles (< 5 μm) Under Low Vacuum and Room Temperature Using Nano-particle Deposition System (NPDS), Surf. Coat. Technol., 2012, 206(8–9), p 2125-2132CrossRefGoogle Scholar
  29. 29.
    A. Fluent, Ansys Fluent Theory Guide, ANSYS Inc., USA, 2011, 15317, p 724-746Google Scholar
  30. 30.
    C. Kleinstreuer and Y. Feng, Computational Analysis of Non-spherical Particle Transport and Deposition in Shear Flow with Application to Lung Aerosol Dynamics—A Review, J. Biomech. Eng., 2013, 135(2), p 021008CrossRefGoogle Scholar
  31. 31.
    H. Park, J. Heo, F. Cao, J. Kwon, K. Kang, G. Bae, and C. Lee, Deposition Behavior and Microstructural Features of Vacuum Kinetic Sprayed Aluminum Nitride, J. Therm. Spray Technol., 2013, 22(6), p 882-891CrossRefGoogle Scholar
  32. 32.
    J. Kwon, H. Park, I. Lee, and C. Lee, Effect of Gas Flow Rate on Deposition Behavior of Fe-Based Amorphous Alloys in Vacuum Kinetic Spray Process, Surf. Coat. Technol., 2014, 259, p 585-593CrossRefGoogle Scholar
  33. 33.
    J. Heo, P. Sudhagar, H. Park, W. Cho, Y.S. Kang, and C. Lee, Room Temperature Synthesis of Highly Compact TiO2 Coatings by Vacuum Kinetic Spraying to Serve as a Blocking Layer in Polymer Electrolyte-Based Dye-Sensitized Solar Cells, J. Therm. Spray Technol., 2015, 24(3), p 328-337CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Hyungkwon Park
    • 1
  • Hansol Kwon
    • 2
  • Yeonju Kim
    • 2
  • Changhee Lee
    • 2
    Email author
  1. 1.Research & Development (R&D) CenterHyundai Steel CompanyDangjin-SiSouth Korea
  2. 2.Kinetic Spray Coating Laboratory (NRL), Division of Materials Science and EngineeringHanyang UniversitySeongdong-Gu, SeoulSouth Korea

Personalised recommendations