Journal of Thermal Spray Technology

, Volume 28, Issue 7, pp 1554–1564 | Cite as

PS-PVD Processing of Single-Phase Lanthanum Tungstate Layers for Hydrogen-Related Applications

  • D. Marcano
  • M. E. Ivanova
  • G. MauerEmail author
  • Y. J. Sohn
  • A. Schwedt
  • M. Bram
  • N. H. Menzler
  • R. Vaßen
Peer Reviewed


This work presents a systematic study of the lanthanum tungstate (LaWO) ceramic layers formation on porous metallic substrates as a function of the PS-PVD processing parameters including plasma characteristics, support type and temperature, as well as addition of O2 during the spraying. Through precise control of the PS-PVD parameters, a set of processing conditions were found that led to He gas-tight purely cubic LaWO layers with negligible secondary phase precipitations. Being dependent on process conditioning, the formation and evolution of the cubic La6−xWO12−δ (x = 0.3-0.6) as the main phase of functional importance and of the undesired secondary phases (La2O3 and La6W2O15) was strongly affected by the cation and oxygen stoichiometries. The rapid cooling of the feedstock at particle impact on the substrate led to the formation of highly La-saturated compositions which exhibited significant lattice expansion in comparison with conventionally processed LaWO and is considered beneficial in terms of material performance. And indeed, the H2 permeation performance of the PS-PVD processed LaWO ceramic layers shown earlier by our group was 0.4 ml/min∙cm2 at 825 °C for 60 µm thickness of the functional layer, the highest value reported for this type of proton conducting ceramics, so far.


crofer®22APU supported ceramic coatings electron backscatter diffraction (EBSD) functional ceramic coatings H2 separation lanthanum tungstate proton conducting ceramics plasma spray-physical vapor deposition (PS-PVD) 



The authors gratefully acknowledge Mr. Ralf Laufs for his help with the use of the PS-PVD facility. D.M. thanks for funding from the European Community’s Seventh Framework Programme, FP7/2007-2013, under Grant Agreement No. 241309 (DEMOYS Project). M.I. thanks BMBF, Germany, for the financial support under Grant 03SF0537A (ProtOMem project).


  1. 1.
    H. Shimura, T. Fujimoto, and S. Iwahara, Proton Conduction in Non-Perovskite-Type Oxides at Elevated Temperatures, Solid State Ionics, 2001, 143, p 117-123CrossRefGoogle Scholar
  2. 2.
    R. Haugsrud, Defects and Transport Properties in Ln6WO12 (Ln = La, Nd, Gd, Er), Solid State Ionics, 2007, 178, p 555-560CrossRefGoogle Scholar
  3. 3.
    C. Haugsrud and R. Kjoelseth, Effects of Protons and Acceptor Substitution on the Electrical Conductivity of La6WO12, J. Phys. Chem. Solids, 2008, 69, p 1758-1765CrossRefGoogle Scholar
  4. 4.
    J. Seeger, M.E. Ivanova, W.A. Meulenberg, D. Sebold, D. Stöver, G. Scherb, S. Schumacher, S. Escolástico, C. Solis, and J.M. Serra, Synthesis and Charaterization of Nonsubstituted and Substituted Proton-Conducting La6-xWO12-y, Inorg. Chem., 2013, 52, p 10375-10386CrossRefGoogle Scholar
  5. 5.
    D. van Holt, E. Forster, M.E. Ivanova, W.A. Meulenberg, M. Müller, S. Baumann, and R. Vaßen, Ceramic Materials for H2 Transport Membranes Applicable for Gas Separation Under Coal-Gasification-Related Conditions, J. Eur. Cer. Soc., 2014, 34, p 2381CrossRefGoogle Scholar
  6. 6.
    E. Forster, D. van Holt, M.E. Ivanova, S. Baumann, W.A. Meulenberg, and M. Müller, Stability of Ceramic Materials for H2 Transport Membranes in Gasification Environment Under the Influence of Gas Contaminants, J. Eur. Cer. Soc., 2016, 36, p 3457CrossRefGoogle Scholar
  7. 7.
    J.L. Vineet Gupta, Ceramic Proton Conductors, in: M.M. Anthony Sammels (Ed.), Nonporous Inorg. Membr. (Wiley-VCH GmbH, Weinheim, 2006), p. 49-76Google Scholar
  8. 8.
    M. Marrony, H. Matsumoto, N. Fukatsu, M. Stoukides, Typical Applications of Proton Ceramic Cells: A Way to Market, Proton Conducting Ceramics: From Fundamentals to Applied Research, in M. Marrony (Edt.), Pan Stanford Publishing Pte. Ltd., ISBN 978-981-4613-84-2 (2016), p. 291-405Google Scholar
  9. 9.
    G. Kojo, X. Wei, Y. Matsuzaki, H. Matsuo, K. Hellgardt, and J. Otomo, Fabrication and Electrochemical Performance of Anode-Supported Solid Oxide Fuel Cells Based on Proton-Conducting Lanthanum Tungstate Thin Electrolyte, Solid State Ionics, 2019, 337, p 132-139CrossRefGoogle Scholar
  10. 10.
    W. Deibert, M.E. Ivanova, S. Baumann, O. Guillon, and W.A. Meulenberg, Ion-Conducting Ceramic Membrane Reactors for High-Temperature Applications, J. Memb. Sci., 2017, 543, p 79-97CrossRefGoogle Scholar
  11. 11.
    A. Fantin, T. Scherb, J. Seeger, G. Schumacher, U. Gerhards, M.E. Ivanova, W.A. Meulenberg, R. Dittmeyer, and J. Banhart, Crystal Structure of Re-Substituted Lanthanum Tungstate La5.4W1-yReyO12-δ (0 ≤ y ≤ 0.2) Studied by Neutron Diffraction, J. Appl. Cryst., 2016, 49, p 1544CrossRefGoogle Scholar
  12. 12.
    A. Magraso, C. Frontera, D. Marrero-Lopez, and P. Nunez, New Crystal Structure and Characterization of Lanthanum Tungstate “La6WO12″ Prepared by Freeze-Drying Synthesis, Dalt. Trans., 2009, 46, p 10273-10283CrossRefGoogle Scholar
  13. 13.
    K. Cadoret, F. Millot, J. de Cachard, L. Martinez, L. Hennet, A. Douy, M. Licheron, Chemical Behaviour of Lanthanides-Tungsten Composite Materials Used in Thermo-Emissive Cathodes, in Eds. G. Kneringer, P. Rödhammer, H. Wildner, Proc. Plansee Semin. (2001) vol. 1, p 669-683Google Scholar
  14. 14.
    M.E. Ivanova, J. Seeger, J.M. Serra, C. Solis, W.A. Meulenberg, W. Fischer, S. Roitsch, and H.P. Buchkremer, Influence of the La6W2O15 Phase on the Properties and Integrity of La6-xWO12-d Based Membranes, Chem. Mater. Res., 2012, 2, p 56-82Google Scholar
  15. 15.
    M.O. Jarligo, G. Mauer, M. Bram, S. Baumann, and R. Vaßen, Plasma Spray Physical Vapor Deposition of La1−xSrxCoyFe1−yO3−δ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports, J. Therm. Spray Technol., 2014, 23, p 213-219CrossRefGoogle Scholar
  16. 16.
    D. Marcano, G. Mauer, Y.J. Sohn, R. Vaßen, J. Garcia-Fayos, and J.M. Serra, Controlling the Stress State of La1-xSrxCoyFe1-yO3-δ Oxygen Transport Membranes on Porous Metallic Supports Deposited by Plasma Spray – Physical Vapor Process, J. Membr. Sci., 2016, 503, p 1-7. CrossRefGoogle Scholar
  17. 17.
    D. Marcano, G. Mauer, R. Vaßen, and A. Weber, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS) and Plasma Spray-Physical Vapor Deposition (PS-PVD), Surf. Coatings Technol., 2017, 318, p 170-177CrossRefGoogle Scholar
  18. 18.
    W. Deibert, M.E. Ivanova, W.A. Meulenberg, R. Vaßen, and O. Guillon, Preparation and sintering behaviour of La5.4WO12-d asymmetric membranes with optimised microstructure for hydrogen separation, J. Membr. Sci., 2015, 492, p 439CrossRefGoogle Scholar
  19. 19.
    W. Deibert, V. Stournari, M.E. Ivanova, S. Escolástico, J.M. Serra, J. Malzbender, T. Beck, W.A. Meulenberg, L. Singheiser, and O. Guillon, Effect of microstructure on electrical and mechanical properties of La5.4WO12-δ proton conductors, J. Eur. Cer. Soc., 2018, 38, p 3527CrossRefGoogle Scholar
  20. 20.
    M. Bram, R. Kauert, H. P. Buchkremer, D. Stöver, Porous Materials Porous Metal Sheets Made By Tape Casting Of Metal Powders, in EPMA, Proceedings of Euro-PM 2003, 20-22 October 2003, Valencia, Spain 2003, p 353-359Google Scholar
  21. 21.
    G. Mauer, Plasma Characteristics and Plasma-Feedstock Interaction Under PS-PVD Process Conditions, Plasma Chem. Plasma Proc., 2014, 34(5), p 1171-1186. CrossRefGoogle Scholar
  22. 22.
    J.A. Aguilera and C. Aragon, Characterization of a Laser-Induced Plasma by Spatially Resolved Spectroscopy of Neutral Atom and Ion Emissions Comparison of Local and Spatially Integrated Measurements, Spectrochim. Acta, Part B, 2004, 59, p 1861-1876CrossRefGoogle Scholar
  23. 23.
    G. Mauer, N. Schlegel, A. Guinard, R. Vaßen, and O. Guillon, Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings, J. Therm. Spray Technol., 2015, 24, p 1187-1194CrossRefGoogle Scholar
  24. 24.
    D. Marcano, G. Mauer, Y.J. Sohn, R. Vaßen, J. Garcia-Fayos, and J.M. Serra, The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1-xSrxCoyFe1-yO3-δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2016, 25(4), p 631-638. CrossRefGoogle Scholar
  25. 25.
    G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: new Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22, p 646-658. CrossRefGoogle Scholar
  26. 26.
    G. Mauer, N. Schlegel, A. Guignard, M.O. Jarligo, S. Rezanka, A. Hospach, R. Vaßen, Plasma Spraying of Ceramics with Particular Difficulties in Processing, J. Therm. Spray Technol. 24(1-2), 30-37 (2015).
  27. 27.
    K.-D. Kreuer, Proton-Conducting Oxides, Ann. Rev. Mater. Res., 2003, 33, p 333-359CrossRefGoogle Scholar
  28. 28.
    M.E. Ivanova, W. Deibert, D. Marcano, S. Escolástico, G. Mauer, W.A. Meulenberg, M. Bram, J.M. Serra, R. Vaßen, and O. Guillon, Lanthanum Tungstate Membranes for H2 Extraction and CO2 Utilization: Fabrication Strategies Based on Sequential Tape Casting and Plasma-Spray Physical Vapor Deposition, Sep. Purif. Technol., 2019, 219, p 100-112CrossRefGoogle Scholar
  29. 29.
    V. Gil, J. Gurauskis, C. Kjølseth, K. Wiik, and M.A. Einarsrud, Hydrogen Permeation in Asymmetric La28−xW4+xO54+3x/2 Membranes, Int. J. Hydrogen Energy, 2013, 38, p 3087-3091CrossRefGoogle Scholar
  30. 30.
    M.E. Ivanova, S. Escolástico, M. Balaguer, J. Palisaitis, Y.J. Sohn, W.A. Meulenberg, O. Guillon, J. Mayer, and J.M. Serra, Hydrogen Separation Through Tailored Dual Phase Membranes With Nominal Composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at Intermediate Temperatures, Sci. Rep., 2016, 6, p 34773CrossRefGoogle Scholar
  31. 31.
    D. Montaleone, E. Mercadelli, S. Escolástico, A. Gondolini, J.M. Serra, and A. Sanson, All-Ceramic Asymmetric Membranes with Superior Hydrogen Permeation. J. Mater, Chem. A, 2018, 6, p 15718-15727Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchJülichGermany
  2. 2.Gemeinschaftslabor für Elektronenmikroskopie RWTHAachenGermany

Personalised recommendations