Microstructure and Sliding Wear Behaviors of Plasma-Sprayed Fe-Based Amorphous Coatings in 3.5 wt.% NaCl Solution

  • Jiangbo ChengEmail author
  • Qin Zhang
  • Yuan Feng
  • Shuo Zhao
  • Xiubing Liang
Peer Reviewed


This paper explored the evolutions of microstructure, fracture toughness and sliding wear behaviors in 3.5 wt.% NaCl solution of Fe43Cr16Mo16(C, B, P)25 amorphous coatings prepared by air plasma spraying process with various powers. The results showed that the as-sprayed coatings display full glassy nature and high thermal stability with glass transition temperature (Tg) and onset crystallization temperature (Tx) of 595 and 672 °C, respectively. The coatings become denser as a function of spraying powers. At a lower power of 28 kW, the average hardness and fracture toughness of the coating are 13.1 GPa and 2.62 MPa m1/2, respectively. At a higher power of 42 kW, they are gradually increasing to 22.1 GPa and 4.25 MPa m1/2, respectively. The spraying power also has a remarkable influence on sliding wear behaviors of the coating under corrosive environment. The wear rate in a 3.5 wt.% NaCl solution of the coating deposited with 42 kW is about 1.6 and 4.2 times lower than that of the coating deposited with 28 kW and EQ 70 marine steel, respectively. The microdefects and corrosion phenomena responsible for the variations of the wear rate of the coatings under corrosive environment are discussed in details.


coatings mechanical properties plasma spraying 



This project is supported by National Natural Science Foundation of China (Grant Number: 51575159), the Key Research and Development plan of Jiangsu Province, China (Grant Number: BE2017065), the Fundamental Research Funds for the Central Universities (Grant Number: 2018B16914), and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant Number: ASMA201801).


  1. 1.
    X.C. Zhang, B.S. Xu, F.Z. Xuan, H.D. Wang, and Y.X. Wu, Microstructural and Porosity Variations in the Plasma-Sprayed Ni-Alloy Coatings Prepared at Different Spraying Powers, J. Alloys Compd., 2009, 473, p 145-151CrossRefGoogle Scholar
  2. 2.
    L. Marcinauskas, Ž. Kavaliauskas, and R. Kėželis, Formation of Carbon Composite Coatings by Plasma Spraying, Vacuum, 2015, 122, p 326-331CrossRefGoogle Scholar
  3. 3.
    M. Bitzer, N. Rauhut, G. Mauer, M. Bram, R. Vaßen, H. Buchkremer, D. Stöver, and M. Pohl, Cavitation-Resistant NiTi Coatings Produced by Low-Pressure Plasma Spraying (LPPS), Wear, 2015, 328–329, p 369-377CrossRefGoogle Scholar
  4. 4.
    J. Sun, Q. Fu, R. Yuan, K. Dong, and J. Guo, Corrosion and Thermal Cycling Behavior of Plasma Sprayed Thermal Barrier Coatings on Die Steel, Mater. Des., 2017, 114, p 537-545CrossRefGoogle Scholar
  5. 5.
    K.H. Kim, J.H. Kim, K.W. Hong, J.Y. Park, and C.B. Lee, Application of High-Temperature Ceramic Plasma-Spray Coatings for a Reusable Melting Crucible, Surf. Coat. Technol., 2017, 326, p 429-435CrossRefGoogle Scholar
  6. 6.
    R.S. Pillai, M. Frasnelli, and V.M. Sglavo, HA/β-TCP Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceram. Int., 2017, Google Scholar
  7. 7.
    M. Osadnik, A. Wrona, M. Lis, M. Kamińsha, K. Bilewska, M. Czepelak, K. Czechowska, G. Moskal, and G. Więcław, Plasma-Sprayed Mo-Re Coatings for Glass Industry Applications, Surf. Coat. Technol., 2017, 318, p 349-354CrossRefGoogle Scholar
  8. 8.
    M. Moss, Dispersion Hardening in AI-V by Plasma Jet Spray Quenching, Acta Metall., 1968, 116, p 321-326CrossRefGoogle Scholar
  9. 9.
    S. Sampath and H. Herman, Rapid Solidification and Microstructure Development During Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5, p 445-456CrossRefGoogle Scholar
  10. 10.
    J.B. Cheng, X.B. Liang, and B.S. Xu, Effects of Crystallization on the Corrosion Resistance of Arc-Sprayed FeBSiNb Coatings, J. Therm. Spray Technol., 2014, 23, p 373-379CrossRefGoogle Scholar
  11. 11.
    J. Cheng, D. Liu, X. Liang, and Y. Chen, Wear Behaviors of Arc-Sprayed FeBSiNb Amorphous Coatings, Tribol. Lett., 2015, 60, p 22CrossRefGoogle Scholar
  12. 12.
    S.S. Joshi, S. Katakam, H.S. Arora, S. Mukherjee, and N.B. Dahotre, Amorphous Coatings and Surfaces on Structural Materials, Crit. Rev. Solid State Mater. Sci., 2015, 41, p 1-46CrossRefGoogle Scholar
  13. 13.
    A. Kobayashi, S. Yano, H. Kimura, and A. Inoue, Fe-Based Amorphous Coatings Produced by Smart Plasma Spraying process, Mater. Sci. Eng. B, 2008, 148, p 110-113CrossRefGoogle Scholar
  14. 14.
    Y. Huang, Y. Guo, H. Fan, and J. Shen, Synthesis of Fe–Cr–Mo–C–B Amorphous Coating with High Corrosion Resistance, Mater. Lett., 2012, 89, p 229-232CrossRefGoogle Scholar
  15. 15.
    Y. An, G. Hou, J. Chen, X. Zhao, G. Liu, H. Zhou, and J. Chen, Microstructure and Tribological Properties of Iron-Based Amorphous Coatings Prepared by Atmospheric Plasma Spraying, Vacuum, 2014, 107, p 132-140CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, G. Ma, H. Wang, G. Li, S. Chen, H. Jun, and M. Liu, Fabrication and Characterization of Supersonic Plasma Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Des., 2016, 110, p 332-339CrossRefGoogle Scholar
  17. 17.
    H. Zhang, Y. Xie, L. Huang, S. Huang, X. Zheng, and G. Chen, Effect of Feedstock Particle Sizes on Wear Resistance of Plasma Sprayed Fe-Based Amorphous Coatings, Surf. Coat. Technol., 2014, 258, p 495-502CrossRefGoogle Scholar
  18. 18.
    Z.B. Zheng, Y.G. Zheng, W.H. Sun, and J.Q. Wang, Erosion–Corrosion of HVOF-Sprayed Fe-Based Amorphous Metallic Coating Under Impingement by a Sand-Containing NaCl Solution, Corr. Sci., 2013, 76, p 337-347CrossRefGoogle Scholar
  19. 19.
    M. Yasir, C. Zhang, W. Wang, P. Xu, and L. Liu, Wear Behaviors of Fe-Based Amorphous Composite Coatings Reinforced by Al2O3 Particles in Air and in NaCl Solution, Mater. Des., 2015, 88, p 207-213CrossRefGoogle Scholar
  20. 20.
    S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe–Cr–Mo–C–B–P Bulk Metallic Glasses with High Corrosion Resistance, Acta Mater., 2002, 50, p 489-497CrossRefGoogle Scholar
  21. 21.
    D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus-to-Hardness Ratios Using Knoop indentation Measurements, J. Am. Ceram. Soc., 1982, 65, p C175-C176CrossRefGoogle Scholar
  22. 22.
    S. Zhang and X. Zhang, Toughness Evaluation of Hard Coatings and Thin Films, Thin Solid Films, 2012, 520, p 2375-2389CrossRefGoogle Scholar
  23. 23.
    H. Kenneth and M. Allan, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd ed., Elsevier, Amsterdam, 2009Google Scholar
  24. 24.
    S.D. Zhang, W.L. Zhang, S.G. Wang et al., Characterisation of Three-Dimensional Porosity in an Fe-Based Amorphous Coating and Its Correlation with Corrosion Behaviour, Corr. Sci., 2015, 93, p 211-221CrossRefGoogle Scholar
  25. 25.
    W. Liu, Q. Li, and M. Li, Corrosion Behaviour of Hot-Dip Al–Zn–Si and Al–Zn–Si–3Mg Coatings in NaCl Solution, Corr. Sci., 2017, 121, p 72-83CrossRefGoogle Scholar
  26. 26.
    S. Khireche, D. Boughrara, A. Kadri et al., Corrosion Mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl Solution, Corr. Sci., 2014, 87, p 504-516CrossRefGoogle Scholar
  27. 27.
    H. Wu, H. Li, Q. Li, Q. Fu, C. Ma, D. Yao, Y. Wang, C. Sun, J. Wei, and Z. Han, Effect of Spraying Power on Microstructure and Bonding Strength of MoSi2-Based Coatings Prepared by Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257, p 5566-5570CrossRefGoogle Scholar
  28. 28.
    S. Wang, Y. Li, X. Wang, S. Yamaura, and W. Zhang, Glass-Forming Ability, Thermal Properties, and Corrosion Resistance of Fe-Based (Fe, Ni, Mo, Cr)–P–C–B Metallic Glasses, J. Non-Cryst. Solids, 2017, 476, p 75-80CrossRefGoogle Scholar
  29. 29.
    B. Zhang, J. Cheng, and X. Liang, Effects of Cr and Mo Additions on Formation and Mechanical Properties of Arc-Sprayed FeBSiNb-Based Glassy Coatings, J. Non-Cryst. Solids, 2018, 499, p 245-251CrossRefGoogle Scholar
  30. 30.
    M.W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Effect of Molybdenum on the Stability of Passive Films Formed on Amorphous Fe–Cr–Mo–P–C Alloys by Potentiostatic Polarization in deaErated 1 M HCl, Corr. Sci., 1997, 39, p 589-603CrossRefGoogle Scholar
  31. 31.
    L. Zhang, Y. Chen, Y. Feng et al., Electrochemical Characterization of AlTiN, AlCrN and AlCrSiWN Coatings, Int. J. Refract. Metal Hard Mater., 2015, 53, p 68-73CrossRefGoogle Scholar
  32. 32.
    W. Zhao and D. Kong, Effects of Laser Power on Immersion Corrosion and Electrochemical Corrosion Performances of Laser Thermal Sprayed Amorphous AlFeSi Coatings, Appl. Surf. Sci., 2019, 481, p 161-173CrossRefGoogle Scholar
  33. 33.
    S.S.A. Gillani and P. Häussler, Enhancement of Phase Stability by Manganese in Al60−xMnxCu40, J. Non-Cryst. Solids, 2018, 481, p 361-367CrossRefGoogle Scholar
  34. 34.
    A. Fattah-alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921-928CrossRefGoogle Scholar
  35. 35.
    J. Wu, S.D. Zhang, W.H. Sun et al., Enhanced Corrosion Resistance in Fe-Based Amorphous Coatings Through Eliminating Cr-Depleted Zones, Corr. Sci., 2018, 136, p 161-173CrossRefGoogle Scholar
  36. 36.
    Y. Yang, C. Zhang, Y. Peng et al., Effects of Crystallization on the Corrosion Resistance of Fe-Based Amorphous Coatings, Corr. Sci., 2012, 59, p 10-19CrossRefGoogle Scholar
  37. 37.
    J. Cheng, D. Liu, X. Liang, and Y. Chen, Evolution of Microstructure and Mechanical Properties of In Situ Synthesized TiC–TiB2/CoCrCuFeNi High Entropy Alloy Coatings, Surf. Coat. Technol., 2015, 281, p 109-116CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Jiangbo Cheng
    • 1
    • 2
    Email author
  • Qin Zhang
    • 1
  • Yuan Feng
    • 1
  • Shuo Zhao
    • 1
  • Xiubing Liang
    • 3
  1. 1.College of Mechanics and MaterialsHohai UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina
  3. 3.National Institute of Defense Technology InnovationAcademy of Military Sciences PLA ChinaBeijingChina

Personalised recommendations