Advertisement

Laser Direct Deposition of CoCrAlSiY/YSZ Composites: Densification, Microstructure and Mechanical Properties

  • Tao Wang
  • Jiaqi LiuEmail author
  • Lingchao Qin
  • Jie Tang
  • Jun Wu
Peer Reviewed
  • 51 Downloads

Abstract

A comprehensive study of densification behavior, microstructural features, microhardness and wear properties of the CoCrAlSiY/YSZ composite coatings fabricated under laser direct deposition (LDD) is presented. The relationship of the laser energy density, microstructures and material properties has been built. Due to the presence of a balling phenomenon at a low laser energy density input, the relative density of the formed materials was low. As the laser energy density was increased to 200 kJ/m, a near-complete densification sample was yielded. At the same time, with the increase of the laser energy density, the microstructure of LDD-prepared CoCrAlSiY/YSZ composites went from cluster crystals to columnar crystals, to slender and uniformly distributed columnar crystals, and finally to the shape of coarsened columnar crystals. The results of the sliding wear tests indicated that the CoCrAlSiY/YSZ composites prepared by a 200-kJ/m energy density laser had the most uniform microhardness distribution with a mean value of 657 HV0.2, the smallest friction coefficient of 0.4 and the lowest wear rate of 2.83 × 10−4 mm3/Nm, which resulted from the finest microstructure of the material prepared by this laser.

Keywords

CoCrAlSiY/YSZ composites coatings laser direct deposition MCrAlY micro-hardness wear mechanisms 

Notes

Funding

This work was supported by United National Science Funds and Civil Aviation Funds (No. U1633104), Tianjin Science Funds for the Special of Science & Technology (No. 17JCTPJC51800) and Open Funds of the State Key Lab of Digital Manufacturing Equipment & Technology (No. DMETKF2017018). It is also supported in part by the Research Starting Funds of Civil Aviation University of China (No. 09QD05S) and Important Projects of Ministry (2013ZX04001071).

References

  1. 1.
    L. Li and A. Pinkerton, J, Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track Via Energy and Mass Balances, J. Phys. D Appl. Phys., 2004, 37(14), p 1885CrossRefGoogle Scholar
  2. 2.
    S. Safdar, L. Li, and M.A. Sheikh, Numerical Analysis of the Effects of Non-conventional Laser Beam Geometries During Laser Melting of Metallic Materials, J. Phys. D Appl. Phys., 2007, 40(2), p 593CrossRefGoogle Scholar
  3. 3.
    D. Gu, W. Meiners, Y. Hagedorn, K. Wissenbach, and R. Poprawe, Structural Evolution and Formation Mechanisms of TiC/Ti Nanocomposites Prepared by High-Energy Mechanical Alloying, J. Phys. D Appl. Phys., 2010, 43(43), p 880-886Google Scholar
  4. 4.
    I. Kelbassa, T. Wohlers, and T. Caffrey, Quo Vadis, laser Additive Manufacturing, J. Laser Appl., 2012, 24(24), p 2575-2581Google Scholar
  5. 5.
    M. Naveed Ahsan and A.J. Pinkerton, An Analytical–Numerical Model of laser Direct Metal Deposition Track and Microstructure Formation, Modell. Simul. Mater. Sci. Eng., 2011, 19(5), p 055003CrossRefGoogle Scholar
  6. 6.
    B.V. Krishna, W. Xue, S. Bose, and A. Bandyopadhyay, Engineered Porous Metals for Implants, JOM, 2008, 60(5), p 45-48CrossRefGoogle Scholar
  7. 7.
    Y. Xiong, M. Kim, O. Seo, J.M. Schoenung, and S. Kang (Ti, W)C-Ni Cermets by Laser Engineered Net Shaping, Powder Metall., 2010, 53(1), p 41-46CrossRefGoogle Scholar
  8. 8.
    B. Zheng, T. Topping, J.E. Smugeresky, Y. Zhou, A. Biswas, D. Baker et al., The Influence of Ni-Coated tic on Laser-Deposited in625 Metal Matrix Composites, Metall. Mater. Trans. A, 2010, 41(3), p 568-573CrossRefGoogle Scholar
  9. 9.
    S.N. Patankar, J.P. Escobedo, D.P. Field et al., Superior Superplastic Behavior in Fine-Grained Ti-6Al-4V Sheet, J. Alloy. Compd., 2002, 345(1), p 221-227CrossRefGoogle Scholar
  10. 10.
    B. Rahmati, A.A.D. Sarhan, W.J. Basirun et al., Ceramic Tantalum Oxide Thin Film Coating to Enhance the Corrosion and Wear Characteristics of Ti-6Al-4V Alloy, J. Alloy. Compd., 2016, 676, p 369-376CrossRefGoogle Scholar
  11. 11.
    U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne et al., Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80CrossRefGoogle Scholar
  12. 12.
    J. Cizek, M. Matejkova, J. Kouril, J. Cupera, and I. Dlouhy, Potential of New-Generation Electron Beam Technology in Interface Modification of Cold and HVOF Sprayed MCrAlY Bond Coats, Adv. Mater. Sci. Eng., 2016, 2016, p 1-6CrossRefGoogle Scholar
  13. 13.
    K. Ogawa, N. Gotoh, T. Shoji, and M. Sato, High Temperature Oxidation Behavior of the Interface Between Thermal Barrier Coatings and MCrAlY Bond Coatings (High Temperature Materials), Remote Sens. Environ., 2017, 115(115), p 1387-1400Google Scholar
  14. 14.
    W.R. Chen, X. Wu, B.R. Marple, and P.C. Patnaik, Oxidation and Crack Nucleation/Growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat, Surf. Coat. Technol., 2005, 197(1), p 109-115CrossRefGoogle Scholar
  15. 15.
    M.J. Pomeroy, Coatings for Gas Turbine Materials and Long-Term Stability Issues, Mater. Des., 2005, 26(3), p 223-231CrossRefGoogle Scholar
  16. 16.
    D. Naumenko, P. Song, R. Vaßen, W. Nowak, W.J. Quadakkers, and L. Singheiser, TBC Systems with MCrAlY-Bondcoats—Effect of Coating Manufacturing on Lifetime and Reproducibility. 3rd Japanese-German TBC-Workshop, München, Germany, 25 Jun 2013 - 27 Jun 2013Google Scholar
  17. 17.
    W. Tao, W. Ning, L. Yang et al., Study on Preparation on Technologies of Thermal Barrier Coatings, Surf. Rev. Lett., 2017, 24(4), p 1-15Google Scholar
  18. 18.
    M. Mohammadi, S. Javadpour, S.A.J. Jahromi, and A. Kobayashi, Cyclic Oxidation and Hot Corrosion Behaviors of Gradient CoNiCrAlYSi Coatings Produced by HVOF and Diffusional Processes, Oxid. Met., 2016, 86(3-4), p 221-238CrossRefGoogle Scholar
  19. 19.
    X.X. Li and C.G. Zhou, Development and Oxidation Resistance of Si-Modified MCrAlY Coatings on Nb-Base Alloy, Mater. Sci. Forum, 2007, 546-549, p 1721-1724CrossRefGoogle Scholar
  20. 20.
    X.J. Ren, S.T. Zhang, D.U. Kai-Ping, R.U. Lin Peng, and Shi-Ji, Effect of Si on High Temperature Performance of MCrAlY Coatings, Therm. Spray Technol., 2016, 8(1), p 11-16Google Scholar
  21. 21.
    M. Tahari, M. Shamanian, and M. Salehi, Microstructural and Morphological Evaluation of MCrAlY/YSZ Composite Produced by Mechanical Alloying Method, J. Alloy. Compd., 2012, 525(10), p 44-52CrossRefGoogle Scholar
  22. 22.
    M. Tahari, M. Shamanian, and M. Salehi, The Effect of Heat Treatment and Thermal Spray Processes on the Grain Growth of Nanostructured Composite CoNiCrAlY/YSZ Powders, J. Alloy. Compd., 2015, 646, p 372-379CrossRefGoogle Scholar
  23. 23.
    M.R. Rahimipour and M.S. Mahdipoor, Synthesis of MCrAlY/YSZ Coatings by Plasma Spray Method on the Inconel 738 Substrates and Investigating of their Hot Corrosion Behavior, Iran. J. Surf. Eng., 2012, 14, p 67-75Google Scholar
  24. 24.
    M. Góral, S. Kotowski, K. Dychtoń, M. Drajewicz, and T. Kubaszek, Influence of Low Pressure Plasma Spraying Parameters on MCrAlY Bond Coat and its Microstructure, Key Eng. Mater., 2014, 592-593(12), p 421-424Google Scholar
  25. 25.
    B.Y. Zhang, G.J. Yang, C.X. Li, and C.J. Li, Non-parabolic Isothermal Oxidation Kinetics of Low Pressure Plasma Sprayed MCrAlY Bond Coat, Appl. Surf. Sci., 2017, 406, p 99-109CrossRefGoogle Scholar
  26. 26.
    J.I. Qiang, S. Peng, Y. Wang, H. Liao, and L.U. Jiansheng, Effect of Co and Ni Contents in MCrAlY Bondcoats on Microstructure and Lifetime of APS TBC Systems, Gongneng Cailiao J. Funct. Mater., 2016, 47(4), p 04074-04078Google Scholar
  27. 27.
    R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia et al., The Influence of Laser Treatment on Hot Corrosion Behavior of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34, p 2013-2021CrossRefGoogle Scholar
  28. 28.
    J.C. Pereira, J.C. Zambranob, M.J. Tobar et al., High Temperature Oxidation Behavior of Laser Cladding MCrAlY Coatings on Austenitic Stainless Steel, Surf. Coat. Technol., 2015, 270, p 243-248CrossRefGoogle Scholar
  29. 29.
    I. Sevostianov and M. Kachanov, Elastic and Conductive Properties of Plasma-Sprayed Ceramic Coatings in Relation to their Microstructure: An Overview, Therm. Spray Technol., 2009, 18, p 822-834CrossRefGoogle Scholar
  30. 30.
    Y. Baia, Z.H. Hana, and H.Q. Li, High Performance Nanostructured ZrO2 Based Thermal Barrier Coatings Deposited by High Efficiency Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257, p 7210-7216CrossRefGoogle Scholar
  31. 31.
    M.F. Morks, C.C. Berndt, Y. Durandet et al., Microscopic Observation of Laser Glazed Yttria-Stabilized Zirconia Coatings, Appl. Surf. Sci., 2010, 256, p 6213-6218CrossRefGoogle Scholar
  32. 32.
    R.D. Jackson, M.P. Taylor, H.E. Evans, and X.H. Li, Oxidation Study of an EB-PVD MCrAlY Thermal Barrier Coating System, Oxid. Met., 2011, 76(3-4), p 259-271CrossRefGoogle Scholar
  33. 33.
    P. Song, J. Lu, T. Huang, D. Zhang, and J. Lü, Different Growth Mechanisms of Alumina on the Surface of Niptal and MCrAlY Bond Coatings in EB-PVD TBC System, Rare Metal Mater. Eng., 2014, 43(3), p 601-604Google Scholar
  34. 34.
    W. Tao, L. Jiaqi, and Q. Lingchao, Effects of Laser Power on Microstructure and Hardness of CoNiCrAlY Cladding Coatings, Hot Work. Technol., 2018, 24, p 142-145Google Scholar
  35. 35.
    S. Zhou, Z. Xiong, J. Lei et al., Influence of Milling Time on the Microstructure Evolution and Oxidation Behavior of NiCrAlY Coatings by Laser Induction Hybrid Cladding, Corros. Sci., 2016, 103, p 105-116CrossRefGoogle Scholar
  36. 36.
    J.C. Pereira, J.C. Zambrano, M.J. Tobar, A. Yañez, and V. Amigó, High Temperature Oxidation Behavior of Laser Cladding MCrAlY Coatings on Austenitic Stainless Steel, Surf. Coat. Technol., 2015, 270, p 243-248CrossRefGoogle Scholar
  37. 37.
    Y.U. Shurong, K. Jiang, and D. Fan, 5056 Aluminum Alloy and Coated Steel Overlapped Fusion Welding-Brazing by Laser with Preset Filler Powder, J. Mech. Eng., 2014, 50(12), p 83CrossRefGoogle Scholar
  38. 38.
    Y. Zhou and G.H. Wu, Analysis Methods in Materials Science—X-Ray Diffraction and Electron Microscopy in Materials Science, 2nd ed., Harbin Institute of Technology Press, Harbin, 2007Google Scholar
  39. 39.
    T. Iida and R.I.L. Gutthrie, The Physical Properties of Liquid Metals, Vol 288, Clarendon Press, Oxford, 1988Google Scholar
  40. 40.
    Q. Jia and G. Dongdong, Selective Laser Melting Additive Manufacturing of TiC/Inconel 718 Bulk-Form Nanocomposites: Densification, Microstructure, and Performance, J. Mater. Res., 2014, 29(17), p 1960-1969CrossRefGoogle Scholar
  41. 41.
    K.C. Mills and Y.C. Su, Review of Surface Tension Data for Metallic Elements and Alloys: Part 1—Pure Metals, Metall. Rev., 2006, 51(6), p 329-351CrossRefGoogle Scholar
  42. 42.
    X.B. Zhou and J.T.M. De Hosson, Reactive Wetting of Liquid Metals on Ceramic Substrates, Acta Mater., 1996, 44, p 421CrossRefGoogle Scholar
  43. 43.
    J.P. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective Laser Melting of Iron-Based Powder, J. Mater. Process. Technol., 2004, 149(1), p 616-622CrossRefGoogle Scholar
  44. 44.
    S. Zhou, Y. Huang, X. Zeng, and Q. Hu, Microstructure Characteristics of Ni-Based WC Composite Coatings by Laser Induction Hybrid Rapid Cladding, Mater. Sci. Eng., A, 2010, 256(1), p 564-572Google Scholar
  45. 45.
    M. Zhong, W. Liu, K. Yao, J.C. Goussain, C. Mayer, and A. Becker, Microstructural Evolution in High Power Laser Cladding of Stellite 6 + WC Layers, Surf. Coat. Technol., 2002, 157(2-3), p 128-137CrossRefGoogle Scholar
  46. 46.
    C. Hong, D. Gu, D. Dai, A. Gasser, A. Weisheit, I. Kelbassa et al., Laser Metal Deposition of TiC/Inconel 718 Composites with Tailored Interfacial Microstructures, Opt. Laser Technol., 2013, 54(32), p 98-109CrossRefGoogle Scholar
  47. 47.
    T. Fuhrich, P. Berger, and H. Hügel, Marangoni Effect in Laser Deep Penetration Welding of Steel, J. Laser Appl., 2001, 13(5), p 178-186CrossRefGoogle Scholar
  48. 48.
    K. Antony and N. Arivazhagan, Studies on Energy Penetration and Marangoni Effect During Laser Melting Process, J. Eng. Sci. Technol., 2015, 10(4), p 509-525Google Scholar
  49. 49.
    L.Y. Sheng, F. Yang, T.F. Xi, and J.T. Guo, Investigation on Microstructure and Wear Behavior of the NiAl-TiC-Al2O3, Composite Fabricated by Self-Propagation High-Temperature Synthesis with Extrusion, J. Alloy. Compd., 2013, 554(2), p 182-188CrossRefGoogle Scholar
  50. 50.
    M. Niu, Q. Bi, S. Zhu, J. Yang, and W. Liu, Microstructure, Phase Transition and Tribological Performances of Ni3 Si-Based Self-Lubricating Composite Coatings, J. Alloy. Compd., 2013, 555(1), p 367-374CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Tao Wang
    • 1
  • Jiaqi Liu
    • 1
    Email author
  • Lingchao Qin
    • 1
  • Jie Tang
    • 1
  • Jun Wu
    • 1
  1. 1.Department of Mechanical Electronic EngineeringCivil Aviation University of ChinaTianjinPeople’s Republic of China

Personalised recommendations