Control of the Mesostructure of Suspension Plasma-Sprayed Coating with Laser Surface Texturing: Application to TBC

  • R. KromerEmail author
  • P. Sokołowski
  • R. T. Candidato
  • S. Costil
  • L. Pawłowski
Peer Reviewed


Thermal barrier coatings manufactured either by atmospheric plasma spraying or electron beam physical vapor deposition are widely used in the hot-temperature sections of gas turbines to provide thermal insulation and corrosion protection. Recently, the suspension plasma spraying process has emerged for the manufacturing of thermal barrier coatings. Specific microstructures including columns can be deposited. A narrow window of optimal parameters remains an outstanding problem to produce the suitable microstructure. Lately, studies demonstrated that the substrate topography plays a significant role in the columnar structure formation. This study shows that the substrate topography obtained via laser surface texturing enables a regular columnar structure. The laser beam generates peaks and cavities regularly arranged on the surface. The plasma spray parameters were selected to produce columnar structures linked to the substrate topography. The suspension composition and coating microstructure were studied. Superalloy samples with bond coats were used as substrates. The results showed that the columnar coating microstructure can be adjusted by optimizing the laser process parameters. The improved coating structure had more than 500 columns per mm2. Substrate surface topography optimization and suspension plasma spraying can improve the performances of thermal barrier coating system.


columns laser surface texturing peaks suspension plasma spraying thermal barrier coating 



The authors gratefully acknowledge the ANR for financial assistance in the ARCOLE (12-BS09-0009) project. The work of Pawel Sokolowski was financed by the Grant 2014/15/N/ST8/02660 funded by the National Science Centre (Poland). We are also grateful to Ms. Monika Michalak for her help with the microscopic analysis of coatings.


  1. 1.
    R. Eriksson, Thermal Barrier Coatings: Durability Assessment and Life Prediction, PhD Dissertation, Linköping, 2013Google Scholar
  2. 2.
    M. Bartsch, B. Baufeld, S. Dalkilic, L. Chernova, and M. Heinzelmann, Fatigue Cracks in a Thermal Barrier Coating System on a Superalloy in Multiaxial Thermomechanical Testing, Int. J. Fatigue, 2008, 30(2), p 211-218CrossRefGoogle Scholar
  3. 3.
    C. Courcier, V. Maurel, L. Rémy, S. Quilici, I. Rouzou, and A. Phelippeau, Interfacial Damage Based Life Model for EB-PVD Thermal Barrier Coating, Surf. Coat. Technol., 2011, 205(13-14), p 3763-3773CrossRefGoogle Scholar
  4. 4.
    U. Schultz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Application, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 302-315CrossRefGoogle Scholar
  5. 5.
    P.G. Klemens and M. Gell, Thermal Conductivity of Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245(2), p 143-149CrossRefGoogle Scholar
  6. 6.
    U. Schultz, M. Menzebach, C. Leyens, and Y.Q. Yang, Influence of Substrate Material On Oxidation Behavior and Cyclic Lifetime of EB-PVD TBC Systems, Surf. Coat. Technol., 2001, 146, p 117-123CrossRefGoogle Scholar
  7. 7.
    A. Cahit, K. Ogawa, A. Turk, and I. Ozdemir, Thermal shock and cycling behavior of thermal barrier coatings (TBCs) used in gas turbines, in Progress in Gas Turbine Performance, ed. by E. Benini (InTech, 2013).Google Scholar
  8. 8.
    E. Bakan and R. Vassen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Material, Processes, and Properties, J. Therm. Spray Technol., 2017, 26, p 992-1010CrossRefGoogle Scholar
  9. 9.
    N. Goubot, J. Dehrs, and F. Pierrelatte, Comparison of TBC coatings obtained by conventional and high velocity aps, DVS-ASM (1999), pp. 556–560Google Scholar
  10. 10.
    R. Vassen, J. Dorning, and M. Dietrich, Recent Development in the Field of aps, Int. Gas Turbine Congr., 2003, 129, p 1-9Google Scholar
  11. 11.
    Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies, J. Therm. Spray Technol., 2012, 21(5), p 950-962CrossRefGoogle Scholar
  12. 12.
    W.R. Chen, X. Wu, and D. Dudzinski, Influence of Thermal Cycle Frequency on the TGO Growth and Cracking Behaviors of an APS-TBC, J. Therm. Spray Technol., 2012, 21(6), p 1294-1299CrossRefGoogle Scholar
  13. 13.
    R. Kromer, S. Costil, J. Cormier, D. Courapied, L. Berthe, P. Peyre, and M. Boustie, Laser Surface Patterning to Enhance Adhesion of Plasma Sprayed Coatings. Surf. Coat. Tech., 2015, 278, p 171–182CrossRefGoogle Scholar
  14. 14.
    N. Markoscan, M. Gupta, S. Joshi, P. Nylen, X.H. Li, and J. Wigren, Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26, p 1104-1114CrossRefGoogle Scholar
  15. 15.
    O. Tingaud et al., Suspension plasma spraying of zirconia coatings: process and coating structure, in 18th International Symposium on Plasma Chemistry (2007), p. 4Google Scholar
  16. 16.
    H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123CrossRefGoogle Scholar
  17. 17.
    P. Sokołowski, L. Pawłowski, D. Dietrich, T. Lampke, and D. Jech, Advanced Microscopic Study of Suspension Plasma-Sprayed Zirconia Coatings with Different Microstructures, J. Therm. Spray Technol., 2016, 25(1-2), p 94-104CrossRefGoogle Scholar
  18. 18.
    P. Fauchais, M. Varderlle, A. Vardelle, and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129CrossRefGoogle Scholar
  19. 19.
    N. Curry, K. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5(3), p 338-356CrossRefGoogle Scholar
  20. 20.
    K. VanEvery et al., Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  21. 21.
    B. Bernard, A. Quet, L. Bianchi, V. Shick, A. Joulia, A. Malié, and B. Rémy, Effect of Suspension Plasma Sprayed YSZ Columnar Microstructure and Bond Coats Surface Preparation on Thermal Barrier Coating Properties, J. Therm. Spray Technol., 2017, 26(6), p 1025-1037CrossRefGoogle Scholar
  22. 22.
    R. Kromer, S. Costil, J. Cormier, L. Berthe, P. Peyre, and D. Courapied, Laser Patterning Pretreatment Before Thermal Spraying: A Technique to Adapt and Control the Surface Topography to Thermomechanical Loading and Materials, J. Therm. Spray Tech., 2016, 25(5), p 401-410CrossRefGoogle Scholar
  23. 23.
    P. Sokołowski, S. Kozerski, L. Pawłowski, and A. Ambroziak, The Key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106CrossRefGoogle Scholar
  24. 24.
    B. Bernard, L. Bianchi, A. Malie, A. Joulia, and B. Remy, Columnar Suspension Plasma Sprayed Coating Microstructural Control for Thermal Barrier Coating Applications, J. Eur. Ceram. Soc., 2016, 36(4), p 1081-1089CrossRefGoogle Scholar
  25. 25.
    D. Marla, U.V. Bhandakar, and S.S. Joshi, Modeling Nanosecond Pulsed Laser Ablation: A Focus on Temperature Dependence of Material Properties, Manuf. Lett., 2014, 2(2), p 13-19CrossRefGoogle Scholar
  26. 26.
    V. Semak and A. Matsunawa, The Role of Recoil Pressure in Energy Balancing During Laser Material Processing, J. Phys. D, 1997, 30(18), p 2541-2552CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • R. Kromer
    • 1
    Email author
  • P. Sokołowski
    • 2
  • R. T. Candidato
    • 3
  • S. Costil
    • 4
  • L. Pawłowski
    • 5
  1. 1.Université de Bordeaux, CNRS, Arts et MetiersGradignanFrance
  2. 2.Faculty of Mechanical EngineeringWroclaw University of Science and TechnologyWroclawPoland
  3. 3.Physics Department, College of Science and MathematicsMindanao State University-Iligan Institute of TechnologyIliganPhilippines
  4. 4.ICB-LERMPS UMR 6303Univ. Bourgogne Franche-Comté, UTBMBelfortFrance
  5. 5.IRCER UMR CNRS 7315Université de LimogesLimoges CedexFrance

Personalised recommendations