Powder Development and Qualification for High-Performance Cold Spray Copper Coatings on Steel Substrates

  • Dominique PoirierEmail author
  • Jean-Gabriel Legoux
  • Phuong Vo
  • Bruno Blais
  • Jason D. Giallonardo
  • Peter G. Keech
Peer Reviewed


This paper presents the development work undertaken to tailor Cu powder size specifications to produce dense cold spray Cu coatings featuring strong adherence on steel substrates. Through review of historical data generated in the course of the development of Cu coatings for corrosion protection of Used (Nuclear) Fuel Containers, it was found that particle size distribution was particularly critical to meet application adhesion requirements of 60 MPa and prevent nozzle clogging during application; D01 and D90 were fixed at 5 and 60 µm, respectively. The effect of powder size on coating microstructure and adhesion was further investigated with four Cu powder lots presenting different granulometries. The four lots were analyzed for composition, hardness, microstructure and morphology. Their in-flight particle velocities were measured using a coldspraymeter and the impact temperatures and velocities were simulated. Using fixed spraying conditions consisting of a He bond coat and a nitrogen buildup step, 3-4-mm-thick coatings were produced and tested for bond strength. Coating cross sections and fracture surfaces of selected coatings were examined. These trials confirmed that although the various powder sizes tested produced dense and sound coatings, tight control of particle size distributions was required to achieve optimal impact velocities that ensure deformation of the steel and good coating adhesion.


adhesive strength bond strength cold spray copper 


  1. 1.
    P. Vo, D. Poirier, J.-G. Legoux, E. Irissou, and P. Keech, Application of Copper Coatings onto Used-Fuel Canisters for the Canadian Nuclear Industry, High Pressure Cold Spray: Principles and Applications, ASM International 2016, p 253-276Google Scholar
  2. 2.
    P. Vo, D. Poirier, J.-G. Legoux, P.G. Keech, D. Doyle, P. Jakupi, and E. Irissou, Development of Cold Spray Technology for Copper Coating of Carbon Steel Used Fuel Container Prototypes for CANDU fuel, Nuclear Waste Management organization, 2015, p 64Google Scholar
  3. 3.
    X.-J. Ning, J.-H. Jang, and H.-J. Kim, The Effects of Powder Properties on In-Flight Particle Velocity and Deposition Process During Low Pressure Cold Spray Process, Appl. Surf. Sci., 2007, 253(18), p p7449-p7455CrossRefGoogle Scholar
  4. 4.
    T. Hussain, S. Yue, and C.J. Li, Characteristics of Feedstock Materials, Modern Cold Spray; Materials, Process and Applications, Springer, Berlin, 2015, p 73-105Google Scholar
  5. 5.
    T. Schmidt, F. Gaertner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperature, J. Therm. Spray Technol., 2006, 15(4), p 488-494CrossRefGoogle Scholar
  6. 6.
    P. King, M. Yandouzi, and B. Jodoin, The Physics of Cold Spray, Modern Cold Spray; Materials, Process and Application, Springer, Berlin, 2015, p 44-67Google Scholar
  7. 7.
    T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5), p 794CrossRefGoogle Scholar
  8. 8.
    T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550CrossRefGoogle Scholar
  9. 9.
    J. Lee, S. Shin, H.J. Kim, and C. Lee, Effect of Gas Temperature on Critical Velocity and Deposition Characteristics in Kinetic Spraying, Appl. Surf. Sci., 2007, 253(7), p 3512-3520CrossRefGoogle Scholar
  10. 10.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism For Particles/Substrate Bonding in The Cold-Gas Dynamic-Spray Process, Mater. Design, 2004, 25, p 681-688CrossRefGoogle Scholar
  11. 11.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742CrossRefGoogle Scholar
  12. 12.
    D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582CrossRefGoogle Scholar
  13. 13.
    C.J. Li, W.Y. Li, Y.Y. Wang, G.J. Yang, and H. Fukanuma, A Theoretical Model for Prediction Of Deposition Efficiency in Cold Spraying, Thin Solid Films, 2005, 489(1-2), p 79-85CrossRefGoogle Scholar
  14. 14.
    F. Palacios, M.R. Colonno, A.C. Aranake, A. Campos, S.R. Copeland, T.D. Economon, A.K. Lonkar, T.W. Lukaczyk, T.W.R. Taylor, and J.J. Alonso, Stanford University Unstructured (SU 2): An Open-Source Integrated Computational Environment for Multi-Physics Simulation and Design, in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.Google Scholar
  15. 15.
    T.D. Economon, F. Palacios, and S.R. Copeland, SU2: An Open-Source Suite for Multiphysics Simulation and Design, AIAA J., 2015, 54(3), p 828-846CrossRefGoogle Scholar
  16. 16.
    T.D. Economon, F. Palacios, J.J. Alonso, G. Bansal, D. Mudigere, A. Deshpande, A. Heinecke, and M. Smelyanskiy, Performance Optimizations for Scalable Implicit RANS Calculations with SU2, Comput. Fluids, 2016, 129, p 146-158CrossRefGoogle Scholar
  17. 17.
    F.L. Menter, Zonal Two Equation kw Turbulence Models for Aerodynamic Flows, in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference 1993, p. 2906.Google Scholar
  18. 18.
    C. Geuzaine and J.F. Remacle, Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre-and Post-Processing Facilities, Int. J. Numer. Method. Eng., 2009, 79(11), p 1309-1331CrossRefGoogle Scholar
  19. 19.
    B. Blais, M. Lassaigne, C. Goniva, L. Fradette, and F. Bertrand, Development of an Unresolved CFD–DEM Model for the Flow of Viscous Suspensions and Its Application to Solid–Liquid Mixing, J. Comput. Phys., 2016, 318(1), p 201-221CrossRefGoogle Scholar
  20. 20.
    B. Blais, O. Bertrand, L. Fradette, and F. Bertrand, CFD-DEM Simulations of Early Turbulent Solid–Liquid Mixing: Prediction of Suspension Curve and Just-Suspended Speed, Chem. Eng. Res. Des., 2017, 123, p 388-406CrossRefGoogle Scholar
  21. 21.
    B. Samareh, O. Stier, V. Lüthen, and A. Dolatabadi, Assessment of CFD Modeling Via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18(5-6), p 934-943CrossRefGoogle Scholar
  22. 22.
    J.R. Davis and A.S.M.I.H. Committee, Copper and Copper Alloys, ASM International, Materials Park, 2001Google Scholar
  23. 23.
    C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1/2), p 95-101CrossRefGoogle Scholar
  24. 24.
    K.H. Ko, J.O. Choi, H. Lee, and B.J. Lee, Influence of Oxide Chemistry of Feedstock on Cold Sprayed Cu Coatings, Powder Technol., 2012, 218, p 119-123CrossRefGoogle Scholar
  25. 25.
    K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1-2), p 300-307CrossRefGoogle Scholar
  26. 26.
    S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, Deformation Behavior of the Oxide Film on the Surface of Cold Sprayed Powder Particle, Appl. Surf. Sci., 2012, 259, p 294-300CrossRefGoogle Scholar
  27. 27.
    W.-Y. Li, C.-J. Li, and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256(16), p 4953-4958CrossRefGoogle Scholar
  28. 28.
    A.S. Taha and F.H. Hammad, Application of the Hall-Petch Relation to Microhardness Measurements on Al, Cu, Al-MD 105, and Al-Cu Alloys, Phys. Status Solidi A, 1990, 119, p 455-462CrossRefGoogle Scholar
  29. 29.
    R. Huang and H. Fukanuma, Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Technol., 2012, 21(3-4), p 541-549CrossRefGoogle Scholar
  30. 30.
    J.D. Anderson, Modern Compressible Flow: With Historical Perspective, Vol 12, McGraw-Hill, New York, 1990Google Scholar
  31. 31.
    H. Assadi, T. Schmidt, H. Richter, J. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20, p 1161-1176CrossRefGoogle Scholar
  32. 32.
    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4 V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303CrossRefGoogle Scholar
  33. 33.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  34. 34.
    A. Nastic, B. Jodoin, R. Fernandez, D. MacDonald, M.Vijay, A. Tieu, W. Yan, B. Daniels, and M. Xu, Enhancement of Adhesion Strength of Thick Copper Coatings on Used Nuclear Fuel Steel Containers Prepared With The Forced Pulsed Waterjet (FPWJ), Technical Report Taken from
  35. 35.
    R. Ghelichi, S. Bagherifard, M. Guagliano, and M. Verani, Numerical Simulation of Cold Spray Coating, Surf. Coat. Technol., 2011, 205, p 5294-5301CrossRefGoogle Scholar
  36. 36.
    F. Raletz, M. Vardelle, and G. Ezo’o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coat. Technol., 2006, 201(5), p 1942-1947CrossRefGoogle Scholar
  37. 37.
    T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960CrossRefGoogle Scholar
  38. 38.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564CrossRefGoogle Scholar
  39. 39.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868CrossRefGoogle Scholar
  40. 40.
    A. Nastic, M. Vijay, A. Tieu, S. Rahmati, and B. Jodoin, Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300 M Steel Substrates, J. Therm. Spray Technol., 2017, 26(7), p 1461-1483CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Dominique Poirier
    • 1
    Email author
  • Jean-Gabriel Legoux
    • 1
  • Phuong Vo
    • 1
  • Bruno Blais
    • 1
  • Jason D. Giallonardo
    • 2
  • Peter G. Keech
    • 2
  1. 1.National Research Council of CanadaBouchervilleCanada
  2. 2.Nuclear Waste Management OrganizationTorontoCanada

Personalised recommendations