Journal of Thermal Spray Technology

, Volume 28, Issue 3, pp 391–404 | Cite as

Ultrasonic Characterization of Thermally Sprayed Coatings

  • Safia LemlikchiEmail author
  • Jesper Martinsson
  • Ahmet Hamrit
  • Hakim Djelouah
  • Mohammed Asmani
  • Johan Carlson
Peer Reviewed


This paper describes the simultaneous determination of the ultrasonic parameters in thermally sprayed coatings. The parameters of interest are the longitudinal wave velocity and the ultrasonic attenuation. The test materials are two cobalt-based coatings (FSX 414 and Diamalloy 4060), both deposited onto stainless steel (310SS) substrates. The ultrasonic measurements were carried out in the pulse-echo configuration using several transducers. The ultrasonic signals reflected from the coatings were successfully estimated using the combined model, together with the maximum likelihood estimation and the Levenberg–Marquardt approach. The best estimate was obtained for 20 MHz measurements. Once the model was validated, the ultrasonic parameters of the thermally sprayed coatings were extracted. Model validation is based on the analysis of the residual between measured and estimated signals. Results showed non-dispersive ultrasonic velocities with average values of \((3940 \pm 50)\,{\text{m/s}}\) in Diamalloy 4060 and \((4260 \pm 20)\,{\text{m/s}}\) in FSX 414. High ultrasonic attenuation with a quadratic frequency dependence was observed for both materials. Moreover, it was found that the ultrasonic parameters in thermally sprayed materials are microstructure dependent. For close densities, the harder the coating, the higher the ultrasonic wave velocity and attenuation.


combined model Diamalloy 4060 FSX 414 thermal spray coating ultrasonic attenuation ultrasonic wave velocity 


  1. 1.
    A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223CrossRefGoogle Scholar
  2. 2.
    A. Milanti, H. Koivuluoto, P. Vuoristo, G. Bolelli, F. Bozza, and L. Lusvarghi, Microstructural Characteristics and Tribological Behavior of HVOF-Sprayed Novel Fe-Based Alloy Coatings, Coatings, 2014, 4, p 98-120CrossRefGoogle Scholar
  3. 3.
    D. Lian, Y. Suga, G. Shou, and S. Kurihara, An Ultrasonic Testing Method for Detecting Delamination of Sprayed Ceramic Coating, J. Therm. Spray Technol., 1996, 5(2), p 128-133CrossRefGoogle Scholar
  4. 4.
    H.-L.R. Chen, B. Zhang, M.A. Alvin, and Y. Lin, Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings, J. Therm. Spray Technol., 2012, 21(6), p 1184-1194CrossRefGoogle Scholar
  5. 5.
    Q. Wei, J. Zhu, and W. Chen, Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method, J. Therm. Spray Technol., 2016, 25(3), p 605-612CrossRefGoogle Scholar
  6. 6.
    R.S. Lima, S.E. Kruger, G. Lamouche, and B.R. Marple, Elastic Modulus Measurements via Laser-Ultrasonic and Knoop Indentation Techniques in Thermally Sprayed Coatings, J. Therm. Spray Technol., 2005, 14(1), p 52-60CrossRefGoogle Scholar
  7. 7.
    C. Bescond, S.E. Kruger, D. Lévesque, R.S. Lima, and B.R. Marple, In-Situ Simultaneous Measurement of Thickness, Elastic Moduli and Density of Thermal Sprayed WC-Co Coatings by Laser-Ultrasonics, J. Therm. Spray Technol., 2007, 16(2), p 238-244CrossRefGoogle Scholar
  8. 8.
    S. Parthasarathi, B.R. Tittmann, and E.J. Onesto, Ultrasonic Technique for Measuring Porosity of Plasma-Sprayed Alumina Coatings, J. Therm. Spray Technol., 1997, 6(4), p 486-488CrossRefGoogle Scholar
  9. 9.
    B. Rogé, A. Fahr, J.S.R. Giguère, and K.I. McRae, Nondestructive Measurement of Porosity in Thermal Barrier Coatings, J. Therm. Spray Technol., 2003, 12(4), p 530-535CrossRefGoogle Scholar
  10. 10.
    G. Rosa, R. Oltra, and M.-H. Nadal, Laser Induced Decohesion of Coatings: Probing by Laser Ultrasonics, Ultrasonics, 2002, 40(1–8), p 765-769CrossRefGoogle Scholar
  11. 11.
    A. Fahr, B. Rogé, and J. Thornton, Detection of Thermally Grown Oxides in Thermal Barrier Coatings by Nondestructive Evaluation, J. Therm. Spray Technol., 2006, 15(1), p 46-52CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, J. Chen, and Z. Zhang, Laser Ultrasonic Evaluation of Bonding Layer in Thermal Barrier Coating, in: T. Kundu (ed.) SPIE Health Monitoring of Structural and Biological Systems 2015, March 8–12, 2015 (California, USA), SPIE 2015.Google Scholar
  13. 13.
    Y. Zhao, X.M. Li, L. Lin, and M.K. Lei, Measurements of Coating Density Using Ultrasonic Reflection Coefficient Phase Spectrum, Ultrasonics, 2011, 51(5), p 596-601CrossRefGoogle Scholar
  14. 14.
    Y. Tan, A. Shyam, W.B. Choi, E. Lara-Curzio, and S. Sampath, Anisotropic Elastic Properties of Thermal Spray Coatings Determined via Resonant Ultrasound Spectroscopy, Acta Mater., 2010, 58(16), p 5305-5315CrossRefGoogle Scholar
  15. 15.
    J.C. Li, L.I.N. Li, X.M. Li, L.I. Guang, and M.K. Lei, Ultrasonic Characterization of Modified Cr2O3 Coatings by Reflection Coefficient Spectroscopy, Trans. Nonferrous Met. Soc. China, 2010, 20(3), p P418-424CrossRefGoogle Scholar
  16. 16.
    J. Martinsson, F. Hägglund, and J.E. Carlson, Complete Post-Separation of Overlapping Ultrasonic Signals by Combining Hard and Soft Modeling, Ultrasonics, 2008, 48(5), p 427-443CrossRefGoogle Scholar
  17. 17.
    Introduction to Cobalt and Cobalt Alloys, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, J. R. Davis, Ed., ASM International, 2000, pp. 345–348.Google Scholar
  18. 18.
    N. Cinca and J.M. Guilemany, Structural and Properties Characterization of Stellite Coatings Obtained by Cold Gas Spraying, Surf. Coat. Tech., 2013, 220(Special issue: Proceedings of the fifth workshop RIPT (Les Rencontres Internationales sur la Projection Thermique), pp. 90–97.Google Scholar
  19. 19.
    P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Coating Characterization, Thermal Spray Fundamentals, Springer, Boston, 2014, p 1113-1250CrossRefGoogle Scholar
  20. 20.
    M.F. Rothman and R.D. Zordan, Role of Refractory Elements in Cobalt-base Alloys, in: ASM Conference on Refractory Alloying Elements in Superalloys-Effects and Availability, April 6-13, 1984, (Rio de Janeiro, Brazil).Google Scholar
  21. 21.
    J.-C. Shin, J.-M. Doh, J.-K. Yoon, D.-Y. Lee, and J.-S. Kim, Effect of Molybdenum on the Microstructure and Wear Resistance of Cobalt-Base Stellite Hardfacing Alloys, Surf. Coat. Tech., 2003, 166, p 117-126CrossRefGoogle Scholar
  22. 22.
    D. Klarstrom, P. Crook, and J. Wu, Metallography and Microstructures of Cobalt and Cobalt Alloys, Metallography and Microstructures, Revised ASM Handbook, Vol 9, Materials Park, ASM International, 2004, p 762-774Google Scholar
  23. 23.
    S.H. Thibault, M.D. Charre, and B. Andries, Carbide Transformations During Aging of Wear-Resistant Cobalt Alloys, Metall. Trans. A, 1982, 13A, p 545-550CrossRefGoogle Scholar
  24. 24.
    F. Hägglund, J. Martinsson, and J.E. Carlson, Model-Based Estimation of Thin Multi-layered Media Using Ultrasonic Measurements, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 2009, 56(8), p 1689-1702CrossRefGoogle Scholar
  25. 25.
    J. Kruschke, Doing Bayesian Data Analysis: A Tutorial Introduction with R, JAGS and Stan, 2nd ed., Elsevier Science, Amsterdam, 2014Google Scholar
  26. 26.
    A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian Data Analysis, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2004Google Scholar
  27. 27.
    P. Stoica and Y. Selén, Model-Order Selection: A Review of Information Criterion Rules, IEEE Sig. Proc. Mag., 2004, 21(4), p 36-47CrossRefGoogle Scholar
  28. 28.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Chap. 7, Prentice-Hall, New Jersey, 1993, p 157-218Google Scholar
  29. 29.
    J. Martinsson, Compensating Distortion Effects in Repeated Measurements Under Non-stationary Conditions, Meas. Sci. Technol., 2009, 20(2), p 025103CrossRefGoogle Scholar
  30. 30.
    J. Martinsson, J.E. Carlson, and J. Niemi, Model-Based Phase Velocity and Attenuation Estimation in Wideband Ultrasonic Measurement Systems, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 2007, 54(1), p 138-146CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Safia Lemlikchi
    • 1
    Email author
  • Jesper Martinsson
    • 2
  • Ahmet Hamrit
    • 3
  • Hakim Djelouah
    • 4
  • Mohammed Asmani
    • 5
  • Johan Carlson
    • 2
  1. 1.Division milieu ionisés et lasersCentre de Developpement des Technologies AvanceesAlgiersAlgeria
  2. 2.Luleå University of TechnologyLuleåSweden
  3. 3.ALGESCOBlidaAlgeria
  4. 4.Université des Sciences et de la Technologie Houari BoumedieneAlgiersAlgeria
  5. 5.Université d’Alger 1AlgiersAlgeria

Personalised recommendations