Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 3, pp 327–332 | Cite as

A Discussion on the Limits to Coating Reproducibility Based on Heat Transfer Instabilities

  • Robert B. HeimannEmail author
Peer Reviewed
  • 14 Downloads

Abstract

During the past several decades, plasma spraying has emerged as an important rapid solidification technology, aimed to depositing protective and functional coating on a variety of substrates in sectors as diverse as aerospace, manufacturing, automotive, consumer, and biomedical industries. As these applications demand high-quality coatings with reproducible and reliable properties, stringent process control is mandatory, supported by sophisticated diagnostic equipment. However, owing to the highly nonlinear nature of the plasma spray process, non-deterministic coating property changes make these requirements difficult if not impossible to achieve. In this contribution, possible reasons for nonlinearity are discussed based on a stability theory formalism as described by a cusp catastrophe of codimension 2 (Riemann–Hugoniot catastrophe).

Keywords

chaos theory coating properties cusp catastrophe heat transfer plasma spraying stability theory thermal plasma 

References

  1. 1.
    R.B. Heimann, Plasma Spray Coating. Principles and Applications, 2nd ed., Weinheim, Wiley-VCH, 2008Google Scholar
  2. 2.
    R.B. Heimann, Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma Sprayed Coatings, J. Thermal Spray Technol., 2010, 19(4), p 765-778CrossRefGoogle Scholar
  3. 3.
    M. Vardelle and P. Fauchais, Plasma Spray Processes: Diagnostics and Control?, Pure Appl. Chem., 1999, 71(10), p 1909-1918CrossRefGoogle Scholar
  4. 4.
    P. Fauchais, M. Vardelle, and A. Vardelle, Reliability of Plasma Sprayed Coatings: Monitoring the Plasma Spray Process and Improving the Quality of Coatings, J. Phys. D Appl. Phys., 2013, 46(22), p 224016CrossRefGoogle Scholar
  5. 5.
    S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng., A, 2003, 348, p 54-66CrossRefGoogle Scholar
  6. 6.
    S. Guessasma, D. Hao, L. Moulla, H. Liao, and C. Coddet, Neural Computation to Estimate Heat Flux in An Atmospheric Plasma Spray Process, Heat Transfer Eng., 2005, 26(10), p 65-72CrossRefGoogle Scholar
  7. 7.
    T.J. Ross, Fuzzy Logic with Engineering Applications, Wiley, Chichester, 2004Google Scholar
  8. 8.
    V. Srinivasan, A. Vaidya, T. Streibl, M. Friis, and S. Sampath, On the Reproducibility of Air Plasma Spray Process and Control of Particle State, J. Thermal Spray Technol., 2006, 15(4), p 739-743CrossRefGoogle Scholar
  9. 9.
    J. Qin, L. Wang, D.P. Yuan, D. Gao, and B.Z. Zhang, Chaos and Bifurcations in Periodic Windows Observed in Plasmas, Phys. Rev. Lett., 1989, 63(163), p 163-166CrossRefGoogle Scholar
  10. 10.
    S. Ghorui and A.K. Das, Origin of Fluctuations in Atmospheric Pressure Arc Plasma Physics, Phys. Rev. E, 2004, 69, p 02408CrossRefGoogle Scholar
  11. 11.
    S. Ghorui, S.H. Sahasrabudhe, P.S.S. Murthy, A.K. Das, and N. Venkatramani, Experimental Evidence of Chaotic Behavior in Atmospheric Pressure Discharge, IEEE Trans. Plasma Sci., 2000, 28(1), p 253-260CrossRefGoogle Scholar
  12. 12.
    S. Ghorui and A.K. Das, Theory of Dynamic Behavior in Atmospheric Pressure Arc Plasma Devices. Part I: Theory and System Behavior, IEEE Trans. Plasma Sci., 2004, 32(1), p 296-307CrossRefGoogle Scholar
  13. 13.
    E. Pfender, Heat Transfer from Thermal Plasmas to Neighboring Walls or Electrodes, Pure Appl. Chem., 1976, 48, p 199-213CrossRefGoogle Scholar
  14. 14.
    G.D. Dhamale, N. Tiwari, V.L. Mathe, S.V. Bhoraskar, and S. Ghorui, In Situ Probing of Temperature in Radio Frequency Thermal Plasma Using Yttrium Ion Emission Lines During Synthesis of Yttria Nanoparticles, J. Appl. Phys., 2017, 122(2), p 023301CrossRefGoogle Scholar
  15. 15.
    E. Pfender, Energy Transport in Thermal Plasmas, Pure Appl. Chem., 1980, 52(7), p 1773-1800CrossRefGoogle Scholar
  16. 16.
    E. Pfender, J. Finkes, and R. Spores, Entrainment of Cold Gas into Thermal Plasma Jets, Plasma Chem. Plasma Proc., 1991, 11(4), p 529-543CrossRefGoogle Scholar
  17. 17.
    R. Thom, Structural Stability and Morphogenesis. An Outline of a General Theory of Models. (W.A. Benjamin Advanced Book Progr., 1975)Google Scholar
  18. 18.
    V.V. Palin and E.V. Radkevich, On the Riemann-Hugoniot Catastrophy, Russ. J. Math. Phys., 2015, 22(2), p 227-236CrossRefGoogle Scholar
  19. 19.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems-From Dissipative Structures to Order Through Fluctuations, Wiley, New York, 1977Google Scholar
  20. 20.
    E.C. Zeeman, Catastrophe Theory, Sci. Am., 1976, 234(4), p 65-83CrossRefGoogle Scholar
  21. 21.
    A.G. Eliseev, Radiative-Conductive Heat Transfer of An Air Plasma with a Semi-Infinite Solid Behind a Reflected Shock Wave, in Problems of Convective and Radiative-Conductive Heat Transfer. (Izdat: Nauka, 1980)Google Scholar
  22. 22.
    S. Vaidyanathan, Adaptive Integral Sliding Mode Controller Design for the Control and Synchronization of a Rod-type Plasma Torch Chaotic System, Applications of Sliding Mode Control in Science and Engineering. Studies in Computational Intelligence, S. Vaidyanathan and C.H. Lien, Ed., Springer, Berlin, 2017, p 263-287CrossRefGoogle Scholar
  23. 23.
    M.I. Boulos, The Role of Transport Phenomena and Modeling in the Development of Thermal Plasma Technology, Plasma Chem. Plasma Proc., 2016, 36(1), p 3-28CrossRefGoogle Scholar
  24. 24.
    P. Proulx, J. Mostaghimi, and M.I. Boulos, Plasma-Particle Interaction Effects in Induction Plasma Modeling Under Dense Loading Conditions, Int. J. Heat Mass Transfer, 1985, 28(7), p 1327-1336CrossRefGoogle Scholar
  25. 25.
    C.T. Crowe, M.P. Sharma, and D.E. Stock, The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows, J. Fluid Eng., 1977, 99(2), p 325-332CrossRefGoogle Scholar
  26. 26.
    I.G. Zaltsman, Boltzmann Number, Thermopedia.  https://doi.org/10.1615/atoz.b.boltzmann_number. Accessed 29 Oct 2018
  27. 27.
    C. Moreau, J.F. Bisson, R.S. Lima, and B.R. Marple, Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure Appl. Chem., 2005, 77(2), p 443-462CrossRefGoogle Scholar
  28. 28.
    J.L. Smialek and R.A. Miller, Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Stephan Stecura, Coatings, 2018, 8(7), p 255CrossRefGoogle Scholar
  29. 29.
    K. Yuan, J. Zhu, W.J. Dong, Y.G. Yu, X.L. Lu, X.J. Ji, and X.Y. Wang, Applying Low-Pressure Plasma Spray (LPPS) for Coatings in Low-Temperature SOFC, Int. J. Hydrogen Energy, 2017, 42(34), p 22243-22249CrossRefGoogle Scholar
  30. 30.
    I. Burlacov, J. Jirkowsky, L. Kavan, R. Ballhorn, and R.B. Heimann, Cold Gas Dynamic Spraying (CGDS) of TiO2 (Anatase) Powders Onto Poly(sulfone) Substrates: Microstructural Characterization and Photocatalytic Efficiency, J. Photochem. Photobiol., A, 2007, 187, p 285-292CrossRefGoogle Scholar
  31. 31.
    R.B. Heimann and H.D. Lehmann, Bioceramic Coatings for Medical Implants. Trends and Techniques, Wiley, Weinheim, 2015Google Scholar
  32. 32.
    J.F. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Thermal Spray Technol., 2003, 12(1), p 38-43CrossRefGoogle Scholar
  33. 33.
    N. Tiwari, S. Bhandari, and S. Ghorui, Stability and Structures in Atmospheric Pressure DC Non-transferred Arc Plasma Jets of Argon, Nitrogen, and Air, Phys. Plasmas, 2018, 25, p 072103CrossRefGoogle Scholar
  34. 34.
    S. Guessasma, G. Montavon, and C. Coddet, On the Implementation of the Fractal Concept to Quantify Thermal Spraying Deposit Surface Characteristics, Surf. Coat. Technol., 2003, 173, p 24-38CrossRefGoogle Scholar
  35. 35.
    G. Reisel and R.B. Heimann, Correlation Between Surface Roughness of Plasma-Sprayed Chromium Oxide Coatings and Powder Grain Size Distribution: A Fractal Approach, Surf. Coat. Technol., 2004, 185(2-3), p 215-221CrossRefGoogle Scholar
  36. 36.
    R.B. Heimann, On the Self-Affine Fractal Geometry of Plasma-Sprayed Surfaces, J. Thermal Spray Technol., 2011, 20(4), p 898-908CrossRefGoogle Scholar
  37. 37.
    X. Qiao, Y.M. Wang, W.X. Weng, B.L. Liu, and Q. Li, Influence of Pores on Mechanical Properties of Plasma Sprayed Coatings: Case Study of YSZ Thermal Barrier Coating, Ceram. Int., 2018, 44(17), p 21564-21577CrossRefGoogle Scholar
  38. 38.
    S. Vaidyanathan, Adaptive Control and Synchronization of a Rod-Type Plasma Torch Chaotic System Via Backstepping Control Method, Advances and Applications in Chaotic Systems. Studies in Computational Intelligence, S. Vaidyanathan and C. Volos, Ed., Springer, Berlin, 2016, p 553-578CrossRefGoogle Scholar
  39. 39.
    R.B. Heimann, A Model of Thermo-Diffusive Mass Transport in Geothermal Systems Using a Stability Theory Formalism, Appl. Geochem., 1987, 2(5–6), p 639-647CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of MineralogyTU Bergademie FreibergGörlitzGermany

Personalised recommendations