Journal of Thermal Spray Technology

, Volume 28, Issue 3, pp 359–377 | Cite as

Splats Formation, Interaction and Residual Stress Evolution in Thermal Spray Coating Using a Hybrid Computational Model

  • Abba A. Abubakar
  • Abul Fazal M. ArifEmail author
  • Syed Sohail Akhtar
  • Javad Mostaghimi
Peer Reviewed


Due to the multilayered pattern of coating deposition, residual stresses are commonly developed in thermal spray coatings (TSCs). The large deformation, complex interaction and material mismatch are the main contributing factors to residual stress formation. The constitutive behavior and lifetime are directly dependent on the nature and extent of the residual stress field. In the present study, a computational approach for effective prediction of residual stress evolution in TSCs has been proposed. The proposed approach is hybrid in the sense that it combines “point cloud” (PC) and finite elements (FE) to model the residual stresses. Sprayed droplets deposition and associated deformations are captured on PC using smooth particle hydrodynamics, a popular meshless approach for modeling of violent fluid flows. The conversion of deformed droplets from PC to FE domains is done using several recent algorithms for point cloud processing. Then, conventional FE schemes are used to model the heat transfer and structural deformation occurring during the process. The proposed approach has been found to be effective in predicting residual stress evolution in thermal barrier coatings (TBCs). It can capture the effects of microstructural defects (such as pores and cracks) and interaction of process parameters on residual stress distribution.


finite element method numerical model point cloud residual stress smooth particle hydrodynamics thermal barrier coating thermal spray coatings 



The authors would like to acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM) in funding this work through project FT161016.


  1. 1.
    F. Hermanek, Thermal Spray Terminology and Company Origins, ASM International, Materials Park, 2001Google Scholar
  2. 2.
    R.B. Heimann, Plasma-Spray Coating: Principles and Applications, Wiley, New York, 2008Google Scholar
  3. 3.
    P. Araujo, D. Chicot, M. Staia, and J. Lesage, Residual Stresses and Adhesion of Thermal Spray Coatings, Surf. Eng., 2005, 21(1), p 35-40Google Scholar
  4. 4.
    Z. Xue, A.G. Evans, and J.W. Hutchinson, Delamination Susceptibility of Coatings Under High Thermal Flux, J. Appl. Mech., 2009, 76(4), p 041008Google Scholar
  5. 5.
    Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 306(1), p 23-33Google Scholar
  6. 6.
    A.A. Abubakar, A.F.M. Arif, K.S. Al-Athel, S.S. Akhtar, and J. Mostaghimi, Modeling Residual Stress Development in Thermal Spray Coatings: Current Status and Way Forward, J. Therm. Spray Technol., 2017, 26(6), p 1115-1145Google Scholar
  7. 7.
    L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 2012(53), p 117-127Google Scholar
  8. 8.
    L. Wu, J. Zhu, and H. Xie, Numerical and Experimental Investigation of Residual Stress in Thermal Barrier Coatings During APS Process, J. Therm. Spray Technol., 2014, 23(4), p 653-665Google Scholar
  9. 9.
    M. Elhoriny, M. Wenzelburger, A. Killinger, and R. Gadow, Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings, J. Therm. Spray Technol., 2017, 26(4), p 735-744Google Scholar
  10. 10.
    R. Berthelsen, D. Tomath, R. Denzer, and A. Menzel, Finite Element Simulation of Coating-Induced Heat Transfer: Application to Thermal Spraying Processes, Meccanica, 2016, 51(2), p 291-307Google Scholar
  11. 11.
    B. Klusemann, R. Denzer, and B. Svendsen, Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings, J. Therm. Spray Technol., 2011, 21(1), p 96-107Google Scholar
  12. 12.
    J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, and A. Dolatabadi, Modeling Thermal Spray Coating Processes: A Powerful Tool in Design and Optimization, Surf. Coat. Technol., 2003, 2003(163-164), p 1-11Google Scholar
  13. 13.
    C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. di Michiel, P. Xiao, and R. Cernik, Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by High Energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling, Acta Mater., 2017, 132, p 1-12Google Scholar
  14. 14.
    M.Y. Zhang, H. Zhang, and L.L. Zheng, Simulation of Droplet Spreading, Splashing and Solidification Using Smoothed Particle Hydrodynamics Method, Int. J. Heat Mass Transf., 2008, 51(13), p 3410-3419Google Scholar
  15. 15.
    M. Zhang, Simulation of Surface Tension in 2D and 3D with Smoothed Particle Hydrodynamics Method, J. Comput. Phys., 2010, 229(19), p 7238-7259Google Scholar
  16. 16.
    A. Farrokhpanah, J. Mostaghimi, and M. Bussmann, Free-Surface Enthalpy Method for Transient Convection/Diffusion Phase Change, arXiv Prepr. arXiv1701.00463 (2017)Google Scholar
  17. 17.
    J.J. Monaghan, On the Problem of Penetration in Particle Methods, J. Comput. Phys., 1989, 82(1), p 1-15Google Scholar
  18. 18.
    M. Xue, S. Chandra, J. Mostaghimi, and C. Moreau, A Stochastic Coating Model to Predict the Microstructure of Plasma Sprayed Zirconia Coatings, Model. Simul. Mater. Sci. Eng., 2008, 2008(16), p 065006Google Scholar
  19. 19.
    N. Nayebpashaee, S.H. Seyedein, M.R. Aboutalebi, H. Sarpoolaky, and S.M.M. Hadavi, Finite Element Simulation of Residual Stress and Failure Mechanism in Plasma Sprayed Thermal Barrier Coatings Using Actual Microstructure as the Representative Volume, Surf. Coat. Technol., 2016, 291, p 103-114Google Scholar
  20. 20.
    M. Gupta, K. Skogsberg, and P. Nylén, Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings, J. Therm. Spray Technol., 2014, 23(1), p 170-181Google Scholar
  21. 21.
    Z. Zhu, S. Kamnis, and S. Gu, Numerical Study of Molten and Semi-Molten Ceramic Impingement by Using Coupled Eulerian and Lagrangian Method, Acta Mater., 2015, 90, p 77-87Google Scholar
  22. 22.
    J.W. Adams, R. Ruh, and K.S. Mazdiyasni, Young’s Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature, J. Am. Ceram. Soc., 1997, 80(4), p 903-908Google Scholar
  23. 23.
    H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, and M. Mori, Thermal Expansion Coefficient of Yttria Stabilized Zirconia for Various Yttria Contents, Solid State Ion, 2005, 176(5), p 613-619Google Scholar
  24. 24.
    F. Cverna, Worldwide Guide to Equivalent Irons and Steels, ASM international, Materials Park, 2006Google Scholar
  25. 25.
    M. Zhang, H. Zhang, and L. Zheng, Application of Smoothed Particle Hydrodynamics Method to Free Surface and Solidification Problems, Numer. Heat Transf. Part A Appl., 2007, 52(4), p 299-314Google Scholar
  26. 26.
    J.J. Monaghan, Smoothed Particle Hydrodynamics, Annu. Rev. Astron. Astrophys., 1992, 30, p 543-574Google Scholar
  27. 27.
    S.D. Aziz and S. Chandra, Impact, Recoil and Splashing of Molten Metal Droplets, Int. J. Heat Mass Transf., 2000, 43(16), p 2841-2857Google Scholar
  28. 28.
    M. Corsini, P. Cignoni, and R. Scopigno, Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes, IEEE Trans. Vis. Comput. Graph., 2012, 18(6), p 914-924Google Scholar
  29. 29.
    H. Edelsbrunner and E.P. Mücke, Three-Dimensional Alpha Shapes, ACM Trans. Graph., 1994, 13(1), p 43-72Google Scholar
  30. 30.
    G. Kamberov, G. Kamberova, and A. Jain, in 3D Shape from Unorganized 3D Point Clouds BT: Advances in Visual Computing: First International Symposium, ISVC 2005, Lake Tahoe, NV, USA, 5–7 December 2005. Proceedings, ed. by G. Bebis, R. Boyle, D. Koracin, and B. Parvin (Springer, Berlin, 2005), pp. 621-629Google Scholar
  31. 31.
    H. Hoppe, in Poisson Surface Reconstruction and Its Applications, Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (ACM, 2008), p. 10Google Scholar
  32. 32.
    M. Kazhdan and H. Hoppe, Screened Poisson Surface Reconstruction, ACM Trans. Graph., 2013, 32(3), p 29Google Scholar
  33. 33.
    M. Garland and Y. Zhou, Quadric-Based Simplification in Any Dimension, ACM Trans. Graph., 2005, 24(2), p 209-239Google Scholar
  34. 34.
    S. Boyé, G. Guennebaud, and C. Schlick, Least Squares Subdivision Surfaces, Comput. Graph. Forum, 2010, 29(7), 2021–2028. Google Scholar
  35. 35.
    ABAQUS, ABAQUS Documentation, Dassault Systèmes, Providence, 2013Google Scholar
  36. 36.
    Oerlikon Metco, Nickel Chromium–Aluminum Thermal Spray Powders (2017), p. 1-4, Accessed 20 Feb 2018
  37. 37.
    Oerlikon Metco, 8% Yttria Stabilized Zirconia Agglomerated and HOSP Thermal Spray Powders (2017), pp. 1-6, Accessed 20 Feb 2018
  38. 38.
    Vishay-Micromeasurements, Instruction Bulletin B-129-8: Surface Preparation for Strain Gage Bonding (2014), Accessed 12 Mar 2018
  39. 39.
    Vishay-Micromeasurements, Instruction Bulletin B-127-14: Strain Gage Installations with M-Bond 200 Adhesive (2014), Accessed 12 Mar 2018
  40. 40.
    T. Valente, C. Bartuli, M. Sebastiani, and A. Loreto, Implementation and Development of the Incremental Hole Drilling Method for the Measurement of Residual Stress in Thermal Spray Coatings, J. Therm. Spray Technol., 2005, 14(4), p 462-470Google Scholar
  41. 41.
    M. Escribano and R. Gadow, in Residual Stress Measurement and Modeling for Ceramic Layer Composites, 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A ed. by W.M. Kriven and H.-T. Lin (USA, 2003), pp. 615-622Google Scholar
  42. 42.
    M. Buchmann, R. Gadow, and J. Tabellion, Experimental and Numerical Residual Stress Analysis of Layer Coated Composites, Mater. Sci. Eng. A, 2000, 288(2), p 154-159Google Scholar
  43. 43.
    K. Berreth, M. Buchmann, R. Gadow, and J. Tabellion, in Evaluation of Residual Stresses in Thermal Sprayed Coatings, Proceedings of International Thermal Spray Conference, Düsseldorf (1999)Google Scholar
  44. 44.
    M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50-58Google Scholar
  45. 45.
    S. Alavi and M. Passandideh-Fard, Numerical Simulation of Droplet Impact and Solidification Including Thermal Shrinkage in a Thermal Spray Process, Front. Heat Mass Transf., 2011, 2, p 023007Google Scholar
  46. 46.
    J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872Google Scholar
  47. 47.
    S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84Google Scholar
  48. 48.
    H. Liu, F. Azarmi, M. Bussmann, J. Mostaghimi, and T.W. Coyle, Experiments and Simulation of Rapid Solidification of Air Plasma Sprayed Alloy 625 on Stainless Steel, Surf. Coat. Technol., 2010, 204(9-10), p 1521-1527Google Scholar
  49. 49.
    J. Liu, R. Bolot, and S. Costil, Residual Stresses and Final Deformation of an Alumina Coating: Modeling and Measurement, Surf. Coat. Technol., 2015, 2014(268), p 241-246Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Abba A. Abubakar
    • 1
  • Abul Fazal M. Arif
    • 1
    Email author
  • Syed Sohail Akhtar
    • 1
  • Javad Mostaghimi
    • 2
  1. 1.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Mechanical Engineering DepartmentUniversity of TorontoTorontoCanada

Personalised recommendations