Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 3, pp 472–483 | Cite as

Effects of Interface Bonding on the Residual Stresses in Cold-Sprayed Al-6061: A Numerical Investigation

  • Enqiang LinEmail author
  • Qiyong Chen
  • Ozan C. Ozdemir
  • Victor K. Champagne
  • Sinan MüftüEmail author
Peer Reviewed
  • 59 Downloads

Abstract

A contact model that accounts for interfacial cohesion and thermal conduction is developed to investigate the influence of bonding on the final residual stresses build-up in cold spray. The residual stress evolution in the cold-sprayed Al-6061 coating on an Al-6061 substrate is investigated via three-dimensional single-particle and multi-particle impact simulations. It is shown that the interface bonding mainly affects the local residual stress distribution near the interfaces. The residual stresses are largely due to the kinetic peening and bonding effects. The thermal cooling has negligible influence. In general, this work finds that peening introduces compressive stress, while bonding causes relaxation. The balance between the peening and the bonding effects, which depends strongly on the local bonding environment, determines the final residual stress in the system. This work suggests that the interface bonding should be considered as one of the essential factors in numerical modeling of the residual stresses evolution in cold spray.

Keywords

aluminum coating cold spray interface bonding numerical simulation residual stress 

Notes

Acknowledgment

This work was sponsored in part by the Army Research Laboratories under the Grant Number W911NF-15-2-0026. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Government.

Supplementary material

11666_2019_827_MOESM1_ESM.pdf (53 kb)
Supplementary material 1 (PDF 53 kb)

References

  1. 1.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394CrossRefGoogle Scholar
  2. 2.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742CrossRefGoogle Scholar
  3. 3.
    R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater., 2012, 60, p 6555-6561CrossRefGoogle Scholar
  4. 4.
    C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, and T.J. Eden, Effect of Substrate Surface Roughening and Cold Spray Coating on the Fatigue Life of AA2024 Specimens, Mater. Des. (1980-2015), 2014, 54, p 212-221CrossRefGoogle Scholar
  5. 5.
    Z. Arabgol, H. Assadi, T. Schmidt, F. Gärtner, and T. Klassen, Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings, J. Therm. Spray Technol., 2014, 23, p 84-90CrossRefGoogle Scholar
  6. 6.
    T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater., 2013, 61, p 6329-6337CrossRefGoogle Scholar
  7. 7.
    M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650CrossRefGoogle Scholar
  8. 8.
    G. Shayegan, H. Mahmoudi, R. Ghelichi, J. Villafuerte, J. Wang, M. Guagliano et al., Residual Stress Induced by Cold Spray Coating of Magnesium AZ31B Extrusion, Mater. Des., 2014, 60, p 72-84CrossRefGoogle Scholar
  9. 9.
    V. Luzin, K. Spencer, and M.X. Zhang, Residual Stress and Thermo-mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59, p 1259-1270CrossRefGoogle Scholar
  10. 10.
    K. Spencer, V. Luzin, N. Matthews, and M.X. Zhang, Residual Stresses in Cold Spray Al Coatings: The Effect of Alloying and of Process Parameters, Surf. Coat. Technol., 2012, 206, p 4249-4255CrossRefGoogle Scholar
  11. 11.
    S. Rech, A. Trentin, S. Vezzù, J.-G. Legoux, E. Irissou, and M. Guagliano, Influence of Pre-Heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray, J. Therm. Spray Technol., 2011, 20, p 243-251CrossRefGoogle Scholar
  12. 12.
    M. Saleh, V. Luzin, and K. Spencer, Analysis of the Residual Stress and Bonding Mechanism in the Cold Spray Technique Using Experimental and Numerical Methods, Surf. Coat. Technol., 2014, 252, p 15-28CrossRefGoogle Scholar
  13. 13.
    R. Ghelichi, S. Bagherifard, D. MacDonald, I. Fernandez-Pariente, B. Jodoin, and M. Guagliano, Experimental and Numerical Study of Residual Stress Evolution in Cold Spray Coating, Appl. Surf. Sci., 2014, 288, p 26-33CrossRefGoogle Scholar
  14. 14.
    W. Li, K. Yang, D. Zhang, and X. Zhou, Residual Stress Analysis of Cold-Sprayed Copper Coatings by Numerical Simulation, J. Therm. Spray Technol., 2016, 25, p 131-142CrossRefGoogle Scholar
  15. 15.
    ABAQUS/CAE User’s Manual: Version 6.13 (ABAQUS, Pawtucket, 2012)Google Scholar
  16. 16.
    O.C. Ozdemir, C.A. Widener, D. Helfritch, and F. Delfanian, Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray, J. Therm. Spray Technol., 2016, 25, p 660-671CrossRefGoogle Scholar
  17. 17.
    G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures, in Proceedings 7th International Symposium on Ballistics (1983), pp. 541-547Google Scholar
  18. 18.
    A. Alizadeh Dehkharghani, Tuning Johnson–Cook Material Model Parameters for Impact of High Velocity, Micron Scale Aluminum Particles. Master Thesis (Northeastern University, Boston, 2016)Google Scholar
  19. 19.
    W. Xie, A. Alizadeh-Dehkharghani, Q. Chen, V.K. Champagne, X. Wang, A.T. Nardi et al., Dynamics and Extreme Plasticity of Metallic Microparticles in Supersonic Collisions, Sci. Rep., 2017, 7, p 5073CrossRefGoogle Scholar
  20. 20.
    M.A. Meyers, Plastic Deformation at High Strain Rates. Dynamic Behavior of Materials, Wiley, New York, 2007, p 323-381Google Scholar
  21. 21.
    JAHM Software Inc., Material Properties Database. MPDB (2003); V7.01 demoGoogle Scholar
  22. 22.
    B. Yildirim, S. Muftu, and A. Gouldstone, Modeling of High Velocity Impact of Spherical Particles, Wear, 2011, 270, p 703-713CrossRefGoogle Scholar
  23. 23.
    G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31-48CrossRefGoogle Scholar
  24. 24.
    A. Manes, D. Lumassi, L. Giudici, and M. Giglio, An Experimental-Numerical Investigation on Aluminium Tubes Subjected to Ballistic Impact with Soft Core 7.62 Ball Projectiles, Thin Walled Struct., 2013, 73, p 68-80CrossRefGoogle Scholar
  25. 25.
    M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, and C.A. Schuh, In-Situ Observations of Single Micro-particle Impact Bonding, Scr. Mater., 2018, 145, p 9-13CrossRefGoogle Scholar
  26. 26.
    V.V. Bulatov, B.W. Reed, and M. Kumar, Grain Boundary Energy Function for FCC Metals, Acta Mater., 2014, 65, p 161-175CrossRefGoogle Scholar
  27. 27.
    B. Yildirim, H. Fukanuma, T. Ando, A. Gouldstone, and S. Müftü, A Numerical Investigation Into Cold Spray Bonding Processes, J. Tribol., 2014, 137, p 011102-011113CrossRefGoogle Scholar
  28. 28.
    S. Müftü, S. Zhalehpour, A. Gouldstone, and T. Ando, Assessment of Interface Energy in High Velocity Particle Impacts, in 38th Annual Meeting of The Adhesion Society. Savannah, GA (2015)Google Scholar
  29. 29.
    B.M. Gabriel, V.K. Champagne, P.F. Leaman, and D.J. Helfritch, Cold Spray for Repair of Magnesium Components. Army Research Library Report No ARL-TR-6629 (2013)Google Scholar
  30. 30.
    S. Kikuchi, Y. Hirota, and J. Komotori, Effects of Particle Size for Peening on Microstructural Changes in Steel, J. Jpn. Soc. Abras. Technol., 2010, 54, p 720-724Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  2. 2.United States Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations