Antibacterial Efficacy of Wire Arc Sprayed Copper Coatings Against Various Pathogens

  • Arda Kocaman
  • Ozgul KelesEmail author
Peer Reviewed


The antimicrobial effect of copper (Cu) as well as its potentiality to reduce healthcare-associated infections is well recognized. In this study, a twin wire arc spray gun has been used to produce antibacterial copper coatings on stainless-steel (316L) surfaces. The thickness of coating was 120 ± 30 μm in average. In parallel, series of coating formation simulations were made using Comsol Multiphysics. The coating morphology was examined by scanning electron microscope (SEM) and its structure determined by x-ray diffraction (XRD). Surface roughness measurements were carried out on as-sprayed and polished surfaces by using a 3-D Profilometer. The coating antibacterial efficacy has been investigated considering standard and clinically isolated cultures such as standard ATCC 25922 Escherichia coli (E. coli), standard ATCC 29213 Staphylococcus Aureus (Staph. Aureus), clinically isolated Pseudomonas aeruginosa, Vancomycin-resistant Enterococcus (VRE) and Methicillin-resistant Staphylococcus aureus (MRSA). The predictions of simulations matched with the monitored data with an error below 10%. The coatings exhibited excellent antibacterial properties for all the pathogen types used.


antibacterial coating biocidal copper numerical simulation wire arc spraying 



Part of this study was funded by TUBITAK TEYDEB under the project number 7120870, which is greatly acknowledged. Authors also thank ITU BAP for their grant under the contract number of 38367. Authors extend their appreciation to Prof. Dr. Gultekin Goller, Huseyin Sezer and Husnu Ozturk for their support in the SEM studies of the coatings.

Supplementary material

11666_2018_824_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)


  1. 1.
    C.D. Salgado, K.A. Sepkowitz, J.F. John, J.R. Cantey, H.H. Attaway, K.D. Freeman, P.A. Sharpe, H.T. Michels, and M.G. Schmidt, Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit, 2013, 34(5), p 479-486Google Scholar
  2. 2.
    G. Grass, C. Rensing, and M. Soloz, Metallic Copper as an Antimicrobial Surface, Appl. Environ. Microbiol., 2011, 77(5), p 1541-1547CrossRefGoogle Scholar
  3. 3.
    R. Sharan, S. Chhibber, and R.H. Reed, A Murine Model to Study the Antibacterial Effect of Copper on Infectivity of Salmonella Enterica Serovar Typhimurium, Int. J. Environ. Res. Public Health, 2011, 8(1), p 21-36CrossRefGoogle Scholar
  4. 4.
    J. O’Gorman and H. Humphreys, Application of Copper to Prevent and Control Infection. Where Are We Now?, J. Hosp. Infect., 2012, 81(4), p 217-223CrossRefGoogle Scholar
  5. 5.
    T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960CrossRefGoogle Scholar
  6. 6.
    S. Salavati, T.W. Coyle, and J. Mostaghimi, Twin Wire Arc Spray Process Modification for Production of Porous Metallic Coatings, Surf. Coat. Technol., 2016, 286(1), p 16-24CrossRefGoogle Scholar
  7. 7.
    A. Abedini, A. Pourmousa, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on the Properties of Coatings and Splats Deposited by Wire Arc Spraying, Surf. Coat. Technol., 2006, 201(6), p 3350-3358CrossRefGoogle Scholar
  8. 8.
    V.K. Champagne and D.J. Helfritch, A Demonstration of the Antimicrobial Effectiveness of Various Copper Surfaces, J. Biol. Eng., 2013, 7(1), p 1-6CrossRefGoogle Scholar
  9. 9.
    J.R. Wilson, The Structure of Liquid Metals and Alloys, J. Metall. Rev., 1965, 10(1), p 381-590CrossRefGoogle Scholar
  10. 10.
    M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas Fundamentals and Applications, Vol 1, Springer, Berlin, 1994, p 413-417Google Scholar
  11. 11.
    A.P. Abkenar, Wire Arc Spraying: Particle Production, Transport and Deposition, Ph.D. Thesis, University of Toronto, p 72-74. 2007. Accessed 16 Sept 2018
  12. 12.
    R. Suryanarayanan, Plasma Spraying Theory and Applications, World Scientific Publishing, Singapore, 1993, p 121-135ISBN 981-02-1363-8CrossRefGoogle Scholar
  13. 13.
    T. Blackburn, Test Method for the Continuous Reduction of Bacterial Contamination on Copper Alloy Surfaces. 800R09004, Enviromental Protection Agency (EPA), 2009. Accessed 17 Sept 2018
  14. 14.
    X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, Effect of Nozzle Configuration, Gas Pressure, and Gas Type on Coating Properties in Wire Arc Spray, J. Therm. Spray Technol., 1999, 8(4), p 565-575CrossRefGoogle Scholar
  15. 15.
    M.P. Planche, H. Liao, and C. Coddet, Relationships Between in-Flight Particle Characteristics and Coating Microstructure with a Twin Wire Arc Spray Process and Different Working Conditions, Surf. Coat. Technol., 2004, 182(2), p 215-226CrossRefGoogle Scholar
  16. 16.
    O. Sharifahmadian, H.R. Salimijazi, M.H. Fathi, and J. Mostaghimi, Relationship Between Surface Properties and Antibacterial Behavior of Wire Arc Spray Copper Coatings, Surf. Coat. Technol., 2013, 223(1), p 74-79CrossRefGoogle Scholar
  17. 17.
    R. Lupoi and W. O’Neill, Deposition of Metallic Coatings on Polymer Surfaces Using Cold Spray, Surf. Coat. Technol., 2010, 205(7), p 2167-2173CrossRefGoogle Scholar
  18. 18.
    S. Zimmermann, E. Vogli, M. Kauffeldt, M. Abdulgader, B. Krebs, B. Rüther, K. Landes, J. Schein, and W. Tillmann, Supervision and Measuring of Particle Parameters During the Wire-Arc Spraying Process with the Diagnostic Systems Accuraspray-g3 and LDA (Laser-Doppler-Anemometry), J. Therm. Spray Technol., 2010, 19(4), p 745-755CrossRefGoogle Scholar
  19. 19.
    S. Oukach, H. Hamdi, M. El Ganaoui, and B. Pateyron, Numerical Study of the Spreading and Solidification of a Molten Particle Impacting Onto a Rigid Substrate Under Plasma Spraying Conditions, Therm. Sci., 2015, 19(1), p 277-284CrossRefGoogle Scholar
  20. 20.
    M. Pasandideh-Fard, R. Bhola, S. Chandra, and J. Mostaghimi, Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments, Int. J. Heat Mass Transf., 1998, 41(19), p 2929-2945CrossRefGoogle Scholar
  21. 21.
    O. Sharifahmadian, H.R. Salimijazi, M.H. Fathi, J. Mostaghimi, and L. Pershin, Study of the Antibacterial Behavior of Wire Arc Sprayed Copper Coatings, J. Therm. Spray Technol., 2013, 22(2–3), p 371-379CrossRefGoogle Scholar
  22. 22.
    G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker, Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications, Int. J. Antimicrob. Agents, 2009, 33(6), p 587-590CrossRefGoogle Scholar
  23. 23.
    A. Simchi, E. Tamjid, F. Pishbin, and A.R. Boccaccini, Recent Progress in Inorganic and Composite Coatings with Bactericidal Capability for Orthopaedic Applications, Nanomedicine, 2011, 7(1), p 22-39CrossRefGoogle Scholar
  24. 24.
    H. Gutierrez, T. Portman, V. Pershin, and M. Ringuette, Evaluation of Biocidal Efficacy of Copper Alloy Coatings in Comparison with Solid Metal Surfaces: Generation of Organic Copper Phosphate Nanoflowers, J. Appl. Microbiol., 2013, 114(3), p 680-687CrossRefGoogle Scholar
  25. 25.
    S.L. Warnes, J.C. Highmore, and C.W. Keevil, Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health, Am. Soc. Microbiol. mBio, 2012, 3(6), p 1-10Google Scholar
  26. 26.
    J. Hemin, Y. Zhiming, and L. Li, Antibacterial Properties and Corrosion Resistance of Cu and Ag/Cu Porous Materials, J. Biomed. Mater. Res. Part A, 2008, 87A(1), p 33-37CrossRefGoogle Scholar
  27. 27.
    S.L. Warnes and C.W. Keevil, Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact, Appl. Environ. Microbiol., 2011, 77(17), p 6049-6059CrossRefGoogle Scholar
  28. 28.
    C.E. Santo, N. Taudte, D.H. Nies, and G. Grass, Contribution of Copper Ion Resistance to Survival of Escherichia coli on Metallic Copper Surfaces, Appl. Environ. Microbiol., 2008, 74(4), p 977-986CrossRefGoogle Scholar
  29. 29.
    D.J. Weber and W.A. Rutala, Self-Disinfecting Surfaces: Review of Current Methodologies and Future Prospects, Am. J. Infect. Control, 2013, 41(5), p 31-35CrossRefGoogle Scholar
  30. 30.
    E.R. Kenawy, S.D. Worley, and R. Broughton, The Chemistry And Applications of Antimicrobial Polymers: A State-of-The-Art Review, Biomacromolecules, 2007, 8(5), p 1359-1384CrossRefGoogle Scholar
  31. 31.
    K. Lewis and A.M. Klibanov, Surpassing Nature: Rational Design of Sterile-Surface Materials, Trends Biotechnol., 2005, 23(7), p 343-348CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations