Thermal Shock Resistance of Thermal Barrier Coatings with Different Surface Shapes Modified by Laser Remelting

  • Panpan Zhang
  • Fuhai Li
  • Xiaofeng Zhang
  • Zhihui Zhang
  • Feifei Zhou
  • Luquan Ren
  • Min Liu
Peer Reviewed


Inspired by the unique structures and shapes of biological organisms, thermal barrier coatings (TBCs) with different shapes including dot, striation and grid were modified by laser remelting. NiCrAlY/ZrO2-7 wt.%Y2O3 double-layer-structured TBCs were prepared. The microstructure, microhardness, phase composition and thermal shock behaviors of the as-sprayed and laser-treated specimens with different shapes were examined. The results indicated that the unit was characterized by the dense columnar crystal structure and the high microhardness. The thermal cycle lifetime of the dotted specimen was about twice that of the as-sprayed specimen. On the one hand, due to the elimination of defects and higher hardness after laser remelting, the dotted unit could resist thermal crack propagation. On the other hand, the columnar grains and segmented cracks in the dotted units were beneficial to increase the strain tolerance. However, due to more continuous segmented cracks and transverse cracks, the striated and grid specimens had relatively poor thermal shock resistance.


laser remelting surface shape thermal barrier coatings thermal shock resistance 



This work is supported by Guangdong Province Science and Technology Plan Projects (2016A030312015, 2017A070702016, 2017B030314122 and 2017A070701027), Guangzhou Project of Science and Technology (201807010030), Zhongshan Project of Science and Technology (2017G1FC0008), Natural Science Foundation of Guangdong Province (2016A030312015), the National Natural Science Foundation for Youth (51501044) and GDAS’ Project of Science and Technology Development (2018GDASCX-0111, 2017GDASCX-0202, 2017GDASCX-0111 and 2018GDASCX-0402).


  1. 1.
    C.J. Li, Y. Li, G.J. Yang, and C.X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21(3-4), p 383-390CrossRefGoogle Scholar
  2. 2.
    C.B. Liu, Z.M. Zhang, X.L. Jiang, M. Liu, and Z.H. Zhu, Comparison of Thermal Shock Behaviors Between Plasma-Sprayed Nanostructured and Conventional Zirconia Thermal Barrier Coatings, Trans. Nonferr. Met. Soc., 2009, 19(1), p 99-107CrossRefGoogle Scholar
  3. 3.
    G.H. Meng, B.Y. Zhang, H. Liu, G.J. Yang, T. Xu, C.X. Li, and C.J. Li, Highly Oxidation Resistant and Cost Effective MCrAlY Bond Coats Prepared by Controlled Atmosphere Heat Treatment, Surf. Coat. Technol., 2018, 347, p 54-65CrossRefGoogle Scholar
  4. 4.
    A. Rico, J. Gomez-Garcia, C.J. Munez, P. Poza, and V. Utrilla, Mechanical Properties of Thermal Barrier Coatings After Isothermal Oxidation. Depth Sensing Indentation Analysis, Surf. Coat. Technol., 2009, 203(16), p 2307-2314CrossRefGoogle Scholar
  5. 5.
    M. Daroonparvar, M.A.M. Yajid, N.M. Yusof, S. Farahany, M.S. Hussain, H.R. Bakhsbeshi-Rad, Z. Valefi, and A. Abdolahi, Improvement of Thermally Grown Oxide Layer in Thermal Barrier Coating Systems with Nano Alumina as Third Layer, Trans. Nonferr. Met. Soc., 2013, 23(5), p 1322-1333CrossRefGoogle Scholar
  6. 6.
    Y.Q. Wang and G. Sayre, Commercial Thermal Barrier Coatings with a Double-Layer Bond Coat on Turbine Vanes and the Process Repeatability, Surf. Coat. Technol., 2009, 203(16), p 2186-2192CrossRefGoogle Scholar
  7. 7.
    X.R. Ren, M. Zhao, J. Feng, and W. Pan, Phase Transformation Behavior in Air Plasma Sprayed Yttria Stabilized Zirconia Coating, J. Alloys Compd., 2018, 750, p 189-196CrossRefGoogle Scholar
  8. 8.
    X.F. Zhang, K.S. Zhou, M. Liu, C.M. Deng, C.G. Deng, J.B. Song, and X. Tong, Enhanced Properties of Al-Modified EB-PVD 7YSZ Thermal Barrier Coatings, Ceram. Int., 2016, 42(12), p 13969-13975CrossRefGoogle Scholar
  9. 9.
    A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349CrossRefGoogle Scholar
  10. 10.
    F.F. Zhou, Y. Wang, L. Wang, Z.Y. Cui, and Z.G. Zhang, High Temperature Oxidation and Insulation Behavior of Plasma-Sprayed Nanostructured Thermal Barrier Coatings, J. Alloys Compd., 2017, 704, p 614-623CrossRefGoogle Scholar
  11. 11.
    F.F. Zhou, Y. Wang, L. Wang, Y.M. Wang, W.L. Chen, C.X. Huang, and M. Liu, Synthesis and Characterization of Nanostructured t′-YSZ Spherical Feedstocks for Atmospheric Plasma Spraying, J. Alloys Compd., 2018, 740, p 610-616CrossRefGoogle Scholar
  12. 12.
    Q.Z. Cui, S.M. Seo, Y.S. Yoo, Z. Lu, S.W. Myoung, Y.G. Jung, and U. Paik, Thermal Durability of Thermal Barrier Coatings with Bond Coat Composition in Cyclic Thermal Exposure, Surf. Coat. Technol., 2015, 284, p 69-74CrossRefGoogle Scholar
  13. 13.
    H. Dong, G.J. Yang, H.N. Cai, H. Ding, C.X. Li, and C.J. Li, The Influence of Temperature Gradient Across YSZ on Thermal Cyclic Lifetime of Plasma-Sprayed Thermal Barrier Coatings, Ceram. Int., 2015, 41(9), p 11046-11056CrossRefGoogle Scholar
  14. 14.
    M.R. Begley and H.N.G. Wadley, Delamination Resistance of Thermal Barrier Coatings Containing Embedded Ductile Layers, Acta Mater., 2012, 60(6-7), p 2497-2508CrossRefGoogle Scholar
  15. 15.
    X.H. Zhong, H.Y. Zhao, C.G. Liu, L. Wang, F. Shao, X.M. Zhou, S.Y. Tao, and C.X. Ding, Improvement in Thermal Shock Resistance of Gadolinium Zirconate Coating by Addition of Nanostructured Yttria Partially-Stabilized Zirconia, Ceram. Int., 2015, 41(6), p 7318-7324CrossRefGoogle Scholar
  16. 16.
    Z. Soleimanipour, S. Baghshahi, and R. Shoja-razavi, Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding, J. Mater. Eng. Perform., 2017, 26(4), p 1890-1899CrossRefGoogle Scholar
  17. 17.
    R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, The Influence of Laser Treatment on Thermal Shock Resistance of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2014, 40(1), p 347-355CrossRefGoogle Scholar
  18. 18.
    Z.J. Fan, K.D. Wang, X. Dong, W.Q. Duan, X.S. Mei, W.J. Wang, J.L. Cui, and J. Lv, Influence of Columnar Grain Microstructure on Thermal Shock Resistance of Laser Re-melted ZrO2-7 wt% Y2O3 Coatings and Their Failure Mechanism, Surf. Coat. Technol., 2015, 277, p 188-196CrossRefGoogle Scholar
  19. 19.
    J.H. Lee, P.C. Tsai, and C.L. Chang, Microstructure and Thermal Cyclic Performance of Laser-Glazed Plasma-Sprayed Ceria-Yttria-Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(22-23), p 5607-5612CrossRefGoogle Scholar
  20. 20.
    J.Y. Sun, J. Tong, and Y.H. Ma, Nanomechanical Behaviours of Cuticle of Three Kinds of Beetle, J. Bionic Eng., 2008, 5, p 152-157CrossRefGoogle Scholar
  21. 21.
    J. Lomakin, Y. Arakane, K.J. Kramer, R.W. Beeman, M.R. Kanost, and S.H. Gehrke, Mechanical Properties of Elytra from Tribolium Castaneum Wild-Type and Body Color Mutant Strains, J. Insect Physiol., 2010, 56(12), p 1901-1906CrossRefGoogle Scholar
  22. 22.
    T.R. Faisal, E.M.K. Abad, N. Hristozov, and D. Pasini, The Impact of Tissue Morphology, Cross-Section and Turgor Pressure on the Mechanical Properties of the Leaf Petiole in Plants, J. Bionic Eng., 2010, 7, p S11-S23CrossRefGoogle Scholar
  23. 23.
    X.S. Wang, Y. Li, and Y.F. Shi, Effects of Sandwich Microstructures on Mechanical Behaviors of Dragonfly Wing Vein, Compos. Sci. Technol., 2008, 68(1), p 186-192CrossRefGoogle Scholar
  24. 24.
    H. Zhou, L. Chen, W. Wang, L.Q. Ren, H.Y. Shan, and Z.H. Zhang, Abrasive Particle Wear Behavior of 3Cr2W8V Steel Processed to Bionic Non-smooth Surface by Laser, Mat. Sci. Eng. A Struct., 2005, 412(1-2), p 323-327CrossRefGoogle Scholar
  25. 25.
    H. Zhou, N. Sun, H.Y. Shan, D.Y. Ma, X. Tong, and L.Q. Ren, Bio-inspired Wearable Characteristic Surface: Wear Behavior of Cast Iron with Biomimetic Units Processed by Laser, Appl. Surf. Sci., 2007, 253(24), p 9513-9520CrossRefGoogle Scholar
  26. 26.
    X. Tong, H. Zhou, Z.H. Zhang, N. Sun, H.Y. Shan, and L.Q. Ren, Effects of Surface Shape on Thermal Fatigue Resistance of Biomimetic Non-smooth Cast Iron, Mater. Sci. Eng. A Struct., 2007, 467(1-2), p 97-103CrossRefGoogle Scholar
  27. 27.
    J.R. Song, C.C. Fan, H.S. Ma, L.H. Liang, and Y.G. Wei, Crack Deflection Occurs by Constrained Microcracking in Nacre, Acta Mech. Sinica Prc., 2018, 34(1), p 143-150CrossRefGoogle Scholar
  28. 28.
    Z.H. Zhang, L. Zhang, Z.L. Yu, J.J. Liu, X.J. Li, and Y.H. Liang, In-Situ Mechanical Test of Dragonfly Wing Veins and Their Crack Arrest Behavior, Micron, 2018, 110, p 67-72CrossRefGoogle Scholar
  29. 29.
    F. Nozahic, D. Monceau, and C. Estournes, Thermal Cycling and Reactivity of a MoSi2/ZrO2 Composite Designed for Self-Healing Thermal Barrier Coatings, Mater. Des., 2016, 94, p 444-448CrossRefGoogle Scholar
  30. 30.
    A.K. Ray and R.W. Steinbrech, Crack Propagation Studies of Thermal Barrier Coatings Under Bending, J. Eur. Ceram. Soc., 1999, 19(12), p 2097-2109CrossRefGoogle Scholar
  31. 31.
    F. Chang, K.S. Zhou, X. Tong, L.P. Xu, X.F. Zhang, and M. Liu, Microstructure and Thermal Shock Resistance of the Peg-Nail Structured TBCs Treated by Selective Laser Modification, Appl. Surf. Sci., 2014, 317, p 598-606CrossRefGoogle Scholar
  32. 32.
    F.F. Zhou, Y. Wang, Z.Y. Cui, L. Wang, J.F. Gou, Q.W. Zhang, and C.H. Wang, Thermal Cycling Behavior of Nanostructured 8YSZ, SZ/8YSZ and 8CSZ/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2017, 43(5), p 4102-4111CrossRefGoogle Scholar
  33. 33.
    S.R. Dhineshkumar, M. Duraiselvam, S. Natarajan, S.S. Panwar, T. Jena, and M.A. Khan, Enhancement of Strain Tolerance of Functionally Graded LaTi2Al9O19 Thermal Barrier Coating Through Ultra-short Pulse Based Laser Texturing, Surf. Coat. Technol., 2016, 304, p 263-271CrossRefGoogle Scholar
  34. 34.
    C. Batista, A. Portinha, R.M. Ribeiro, V. Teixeira, M.F. Costa, and C.R. Oliveira, Surface Laser-Glazing of Plasma-Sprayed Thermal Barrier Coatings, Appl. Surf. Sci., 2005, 247(1-4), p 313-319CrossRefGoogle Scholar
  35. 35.
    L. Wang, X.H. Zhong, F. Shao, J.X. Ni, J.S. Yang, S.Y. Tao, and Y. Wang, What is the Suitable Segmentation Crack Density for Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with the Improved Thermal Shock Resistance?, Appl. Surf. Sci., 2018, 431, p 101-111CrossRefGoogle Scholar
  36. 36.
    G.R. Li, G.J. Yang, C.X. Li, and C.J. Li, Strain-Induced Multiscale Structural Changes in Lamellar Thermal Barrier Coatings, Ceram. Int., 2017, 43(2), p 2252-2266CrossRefGoogle Scholar
  37. 37.
    P.P. Zhang, F.H. Li, X.F. Zhang, Z.H. Zhang, C.L. Tan, L.Q. Ren, Y.L. Wang, W.Y. Ma, and M. Liu, Effect of Bionic Unit Shapes on Solid Particle Erosion Resistance of ZrO2-7 wt%Y2O3 Thermal Barrier Coatings Processed by Laser, J. Bionic Eng., 2018, 15(3), p 545-557CrossRefGoogle Scholar
  38. 38.
    H. Jamali, R. Mozafarinia, R.S. Razavi, and R. Ahmadi-Pidani, Comparison of Thermal Shock Resistances of Plasma-Sprayed Nano Structured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2012, 38(8), p 6705-6712CrossRefGoogle Scholar
  39. 39.
    I. Sevostianov and M. Kachanov, Elastic and Conductive Properties of Plasma-Sprayed Ceramic Coatings in Relation to Their Microstructure: An Overview, J. Therm. Spray Technol., 2009, 18(5-6), p 822-834CrossRefGoogle Scholar
  40. 40.
    Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, and J.F. Yang, High Performance Nanostructured ZrO2 Based Thermal Barrier Coatings Deposited by High Efficiency Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257(16), p 7210-7216CrossRefGoogle Scholar
  41. 41.
    R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Evaluation of Hot Corrosion Behavior of Plasma Sprayed Ceria and Yttria Stabilized Zirconia Thermal Barrier Coatings in the Presence of Na2SO4 + V2O5 Molten Salt, Ceram. Int., 2012, 38(8), p 6613-6620CrossRefGoogle Scholar
  42. 42.
    M.J. Lee, B.C. Lee, J.G. Lim, and M.K. Kim, Residual Stress Analysis of the Thermal Barrier Coating System by Considering the Plasma Spraying Process, J. Mech. Sci. Technol., 2014, 28(6), p 2161-2168CrossRefGoogle Scholar
  43. 43.
    J.S. Wang, J.B. Sun, H. Zhang, S.J. Dong, J.N. Jiang, L.H. Deng, X. Zhou, and X.Q. Cao, Effect of Spraying Power on Microstructure and Property of Nanostructured YSZ Thermal Barrier Coatings, J. Alloys Compd., 2018, 730, p 471-482CrossRefGoogle Scholar
  44. 44.
    J. Wu, H.B. Guo, Y.Z. Gao, and S.K. Gong, Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits, J. Eur. Ceram. Soc., 2011, 31(10), p 1881-1888CrossRefGoogle Scholar
  45. 45.
    X.C. Zhang, M. Watanabe, and S. Kuroda, Effects of Processing Conditions on the Mechanical Properties and Deformation Behaviors of Plasma-Sprayed Thermal Barrier Coatings: Evaluation of Residual Stresses and Mechanical Properties of Thermal Barrier Coatings on the Basis of In Situ Curvature Measurement Under a Wide Range of Spray Parameters, Acta Mater., 2013, 61(4), p 1037-1047CrossRefGoogle Scholar
  46. 46.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46(5), p 505-553CrossRefGoogle Scholar
  47. 47.
    A.N. Khan and J. Lu, Behavior of Air Plasma Sprayed Thermal Barrier Coatings, Subject to Intense Thermal Cycling, Surf. Coat. Technol., 2003, 166(1), p 37-43CrossRefGoogle Scholar
  48. 48.
    Y. Wang, G. Darut, X.T. Luo, T. Poirier, J. Stella, H.L. Liao, and M.P. Planche, Influence of Preheating Processes on the Microstructure of Laser Glazed YSZ Coatings, Ceram. Int., 2017, 43(5), p 4606-4611CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Panpan Zhang
    • 1
    • 2
  • Fuhai Li
    • 2
  • Xiaofeng Zhang
    • 2
  • Zhihui Zhang
    • 1
    • 3
  • Feifei Zhou
    • 2
    • 4
  • Luquan Ren
    • 1
  • Min Liu
    • 2
  1. 1.The Key Laboratory of Bionic EngineeringMinistry of Education, Jilin UniversityChangchunChina
  2. 2.National Engineering Laboratory for Modern Materials Surface Engineering Technology, the Key Lab of Guangdong for Modern Surface Engineering TechnologyGuangdong Institute of New MaterialsGuangzhouChina
  3. 3.The State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchunChina
  4. 4.Laboratory of Nano Surface Engineering, Department of Materials Science, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations