Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 161–173 | Cite as

An Economical Approach to Cold Spray Using In-line Nitrogen–Helium Blending

  • D. MacDonaldEmail author
  • S. Rahmati
  • B. Jodoin
  • W. Birtch
Peer Reviewed


The cold gas dynamic spraying process provides an advantageous solution to the deposition, and additive manufacturing, of metals. Namely, it provides a reduced reactive environment, simple operation, and high deposition rates. It is known that the deposition efficiency of the cold spray process can be substantially increased using helium instead of nitrogen as the process gas. However, the use of pure helium can be cost prohibitive and commercially available helium recovery systems constitute a major capital investment and cannot be used with portable systems. This work focuses on the development and use of a novel, in-line gas mixing system, designed to provide a blend of nitrogen and helium at any ratio. Deposits produced with different gas ratios are investigated through particle velocity measurements, deposition efficiency, coating porosity, and coating hardness. The experimental results show that helium, even in lower percentages, can have a significant effect on deposition efficiency and coating quality. From the results, a cost model is presented which, when provided experimental values and user costs, can be used to identify the nitrogenhelium ratio that will produce the lowest overall coating cost.


cold spray cost optimization deposition efficiency gas blending gas mixing helium nitrogen 


  1. 1.
    J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004Google Scholar
  2. 2.
    J. Villafuerte, Ed., Modern Cold Spray, Springer, Windsor, 2015Google Scholar
  3. 3.
    A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Gas-Dynamic Spray Method for Applying a Coating, U.S. Patent 5 302 414, 12 April 1994Google Scholar
  4. 4.
    H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176CrossRefGoogle Scholar
  5. 5.
    O. Stier, Fundamental Cost Analysis of Cold Spray, J. Therm. Spray Technol., 2014, 23(1-2), p 131-139CrossRefGoogle Scholar
  6. 6.
    T. Schmidt, F. Gärtner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15(4), p 488-494CrossRefGoogle Scholar
  7. 7.
    B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200(14-15), p 4424-4432CrossRefGoogle Scholar
  8. 8.
    J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454CrossRefGoogle Scholar
  9. 9.
    B. Samareh, O. Stier, V. Lüthen, and A. Dolatabadi, Assessment of CFD Modeling via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18(5-6), p 934-943CrossRefGoogle Scholar
  10. 10.
    T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808CrossRefGoogle Scholar
  11. 11.
    T. Han, Z. Zhao, B.A. Gillispie, and J.R. Smith, Effects of Spray Conditions on Coating Formation by the Kinetic Spray Process, J. Therm. Spray Technol., 2005, 14(3), p 373-383. CrossRefGoogle Scholar
  12. 12.
    D. MacDonald, A. Nastic, and B. Jodoin, Understanding Adhesion, Cold-Spray Coatings Recent Trends and Future Perspectives, P. Cavaliere, Ed., Springer, New York, 2018, p 421-450 CrossRefGoogle Scholar
  13. 13.
    R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212CrossRefGoogle Scholar
  14. 14.
    J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626CrossRefGoogle Scholar
  15. 15.
    D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582CrossRefGoogle Scholar
  16. 16.
    E.H. Kwon, S.H. Cho, J.W. Han, C.H. Lee, and H.J. Kim, Particle Behavior in Supersonic Flow during the Cold Spray Process, Met. Mater. Int., 2005, 11(5), p 377-381CrossRefGoogle Scholar
  17. 17.
    T. Van Steenkiste and J.R. Smith, Evaluation of Coatings Produced via Kinetic and Cold Spray Processes, J. Therm. Spray Technol., 2004, 13(2), p 274-282CrossRefGoogle Scholar
  18. 18.
    M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 643-650CrossRefGoogle Scholar
  19. 19.
    T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550CrossRefGoogle Scholar
  20. 20.
    E. Irissou, J.-G. Legoux, A.N. Ryabinin, B. Jodoin, and C. Moreau, Review on Cold Spray Process and Technology: Part I—Intellectual Property, J. Therm. Spray Technol., 2008, 17(4), p 495-516CrossRefGoogle Scholar
  21. 21.
    F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232CrossRefGoogle Scholar
  22. 22.
    D. MacDonald, S. Leblanc-Robert, R. Fernández, A. Farjam, and B. Jodoin, Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance, J. Therm. Spray Technol., 2016, 25(6), p 1149-1157CrossRefGoogle Scholar
  23. 23.
    A.G. McDonald, A.N. Ryabinin, E. Irissou, and J.G. Legoux, Gas-Substrate Heat Exchange during Cold-Gas Dynamic Spraying, J. Therm. Spray Technol., 2013, 22(2-3), p 391-397CrossRefGoogle Scholar
  24. 24.
    H. Singh, T.S. Sidhu, and S.B.S. Kalsi, Cold Spray Technology: Future of Coating Deposition Processes, Frat. Ed Integrita Strutt., 2012, 22, p 69-84Google Scholar
  25. 25.
    O.C. Ozdemir, C.A. Widener, D. Helfritch, and F. Delfanian, Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray, J. Therm. Spray Technol., 2016, 25(4), p 660-671CrossRefGoogle Scholar
  26. 26.
    A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10(2), p 375-381CrossRefGoogle Scholar
  27. 27.
    B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11(4), p 496-507CrossRefGoogle Scholar
  28. 28.
    W. Wong, E. Irissou, A.N. Ryabinin, J.G. Legoux, and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 213-226CrossRefGoogle Scholar
  29. 29.
    H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-Flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coatings Technol., 2006, 201(5), p 1935-1941CrossRefGoogle Scholar
  30. 30.
    J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Sci., 2005, 252(5), p 1368-1377CrossRefGoogle Scholar
  31. 31.
    A.S. Alhulaifi and G.A. Buck, A Simplified Approach for the Determination of Critical Velocity for Cold Spray Processes, J. Therm. Spray Technol., 2014, 23(8), p 1259-1269CrossRefGoogle Scholar
  32. 32.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742CrossRefGoogle Scholar
  33. 33.
    P. Richer, A. Zúñiga, M. Yandouzi, and B. Jodoin, CoNiCrAlY Microstructural Changes Induced during Cold Gas Dynamic Spraying, Surf. Coatings Technol., 2008, 203(3-4), p 364-371CrossRefGoogle Scholar
  34. 34.
    S. Menargues, E. Martín, M.T. Baile, and J.A. Picas, New Short T6 Heat Treatments for Aluminium Silicon Alloys Obtained by Semisolid Forming, Mater. Sci. Eng. A, 2015, 621, p 236-242CrossRefGoogle Scholar
  35. 35.
    A.A. Raus, M.S. Wahab, M. Ibrahim, K. Kamarudin, A. Ahmed, and S. Shamsudin, Mechanical and Physical Properties of AlSi10Mg Processed through Selective Laser Melting, in AIP Conference Proceedings, 2017, p 1831Google Scholar
  36. 36.
    V.K. Champagne, D.J. Helfritch, M.D. Trexler, and B.M. Gabriel, The Effect of Cold Spray Impact Velocity on Deposit Hardness, Model. Simul. Mater. Sci. Eng., 2010, 18(6), 065011CrossRefGoogle Scholar
  37. 37.
    A.S. Khanna and W.S. Rathod, Development of CoNiCrAlY Oxidation Resistant Hard Coatings Using High Velocity Oxy Fuel and Cold Spray Techniques, Int. J. Refract. Met. Hard Mater., 2015, 49(1), p 374-382CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • D. MacDonald
    • 1
    Email author
  • S. Rahmati
    • 1
  • B. Jodoin
    • 1
  • W. Birtch
    • 2
  1. 1.University of Ottawa Cold Spray LaboratoryOttawaCanada
  2. 2.Metal Tech & Mgmt Inc.Menomonee FallsUSA

Personalised recommendations