Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 8, pp 1302–1321 | Cite as

HVOF Hydroxyapatite/Titania-Graded Coatings: Microstructural, Mechanical, and In Vitro Characterization

  • J. Henao
  • M. Cruz-bautista
  • J. Hincapie-Bedoya
  • B. Ortega-Bautista
  • J. Corona-Castuera
  • A. L. Giraldo-Betancur
  • D. G. Espinosa-Arbelaez
  • J. M. Alvarado-Orozco
  • G. A. Clavijo-Mejía
  • L. G. Trapaga-Martínez
  • C. A. Poblano-Salas
Peer Reviewed
  • 34 Downloads

Abstract

The present contribution aimed at exploring the HVOF deposition process of bioactive multilayered HAp/titania composite coatings on Ti-6Al-4V substrates. These coatings can be regarded as functionally graded as the weight fraction of the constituent phases gradually changes layer by layer, from pure titania at the substrate–coating interface to pure HAp at the outer surface of the coating. Microstructural investigations were carried out on the graded coatings using scanning electron microscopy coupled with EDS microanalysis to confirm that the compositional gradient met the initial specifications. On the other hand, the in vitro properties of the coatings were studied in simulated body fluid (SBF) for periods ranging from 1 to 14 days. Moreover, mechanical characterization of both as-sprayed and soaked coatings in SBF was carried out by performing Vickers microhardness measurements through their cross section. The apparent interfacial toughness (KCa) of HAp/titania coatings, which is representative of their interfacial crack initiation resistance, was determined by performing indentation tests at the coating–substrate interface. Fracture toughness of both pure hydroxyapatite and functionally graded coatings was also calculated. The results revealed that the graded coatings produced in this work exhibited good reactivity and mechanical stability after being immersed in SBF indicating their potential for biomedical applications.

Keywords

bioactivity graded coatings hydroxyapatite thermal spray titania 

Notes

Acknowledgments

The authors gratefully acknowledge the support to the National Science and Technology Council of Mexico “CONACYT” and to its program of “Cátedras” CONACYT (Project Number 848). The authors thank Christian Felix from CIDESI-CONMAD for hardness and fracture toughness measurements, Dr. M. Gutierrez, Eng. René Diaz, and Dr. M. Dehonor for SEM analyses; and Dr. J. Coronel-Hernandez from Universidad Autónoma del Estado de Querétaro for his support on preparing the feedstock powder. The authors gratefully acknowledge to the Mexican laboratory of thermal spray (CENAPROT) for allowing the development of the in vitro tests in their facilities.

References

  1. 1.
    B.G. Zhang, D.E. Myers, G.G. Wallace, M. Brandt, and P.F. Choong, Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings, Int. J. Mol Sci., 2014, 15(7), p 11878-11921.  https://doi.org/10.3390/ijms150711878 CrossRefGoogle Scholar
  2. 2.
    H.M. Kim, Ceramic Bioactivity and Related Biomimetic Strategy, Curr.Opin. Solid State Mater. Sci., 2003, 7(4-5), p 289-299.  https://doi.org/10.1016/j.cossms.2003.09.014 CrossRefGoogle Scholar
  3. 3.
    M. Šupová, Substituted Hydroxyapatites for Biomedical Applications: A Review, Ceram. Int., 2015, 41(8), p 9203-9231.  https://doi.org/10.1016/j.ceramint.2015.03.316 CrossRefGoogle Scholar
  4. 4.
    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review, J. Funct. Biomater., 2015, 6(4), p 1099-1140.  https://doi.org/10.3390/jfb6041099 CrossRefGoogle Scholar
  5. 5.
    I. Hervas, A. Montagne, A. Van Gorp, M. Bentoumi, A. Thuault, and A. Iost, Fracture Toughness of Glasses and Hydroxyapatite: A Comparative Study of 7 Methods by Using Vickers Indenter, Ceram. Int., 2016, 42(11), p 12740-12750.  https://doi.org/10.1016/j.ceramint.2016.05.030 CrossRefGoogle Scholar
  6. 6.
    M. Granke, A.J. Makowski, S. Uppuganti, M.D. Does, and J.S. Nyman, Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness, J. Bone Miner. Res., 2015, 30(7), p 1290-1300.  https://doi.org/10.1002/jbmr.2452 CrossRefGoogle Scholar
  7. 7.
    A.J. Cooper, W.J. Brayshaw, and A. Sherry, Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing, Metall. Mater. Trans. A, 2018,  https://doi.org/10.1007/s11661-018-4518-2 CrossRefGoogle Scholar
  8. 8.
    H. Wangen, L.I. Havelin, A.M. Fenstad, G. Hallan, O. Furnes, A.B. Pedersen, and A. Eskelinen, Reverse Hybrid Total Hip Arthroplasty: Results from the Nordic Arthroplasty Register Association (NARA), Acta Orthop., 2017, 88(3), p 248-254.  https://doi.org/10.1080/17453674.2016.1278345 CrossRefGoogle Scholar
  9. 9.
    K.T. Mäkelä, A. Eskelinen, P. Pulkkinen, P. Paavolainen, and V. Remes, Total Hip Arthroplasty for Primary Osteoarthritis in Patients Fifty-Five Years of Age or Older: An Analysis of the Finnish Arthroplasty Registry, JBJS, 2008, 90(10), p 2160-2170.  https://doi.org/10.2106/JBJS.G.00870 CrossRefGoogle Scholar
  10. 10.
    Y.W. Song, D.Y. Shan, and E.H. Han, Electrodeposition of Hydroxyapatite Coating on AZ91D Magnesium Alloy for Biomaterial Application, Mater. Lett., 2008, 62(17-18), p 3276-3279.  https://doi.org/10.1016/j.matlet.2008.02.048 CrossRefGoogle Scholar
  11. 11.
    Y. Yang, K.H. Kim, and J.L. Ong, A Review on Calcium Phosphate Coatings Produced Using a Sputtering Process—An Alternative to Plasma Spraying, Biomaterials, 2005, 26(3), p 327-337.  https://doi.org/10.1016/j.biomaterials.2004.02.029 CrossRefGoogle Scholar
  12. 12.
    K.A. Gross, C.S. Chai, G.S.K. Kannangara, B. Ben-Nissan, and L. Hanley, Thin Hydroxyapatite Coatings via Sol–Gel Synthesis, J. Mater. Sci. Mater. Med., 1998, 9(12), p 839-843.  https://doi.org/10.1023/A:1008948228880 CrossRefGoogle Scholar
  13. 13.
    L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res. Part A, 2001, 58(5), p 570-592.  https://doi.org/10.1002/jbm.1056 CrossRefGoogle Scholar
  14. 14.
    C.C. Berndt, F. Hasan, U. Tietz, and K.P. Schmitz. A review of hydroxyapatite coatings manufactured by thermal spray, in Advances in Calcium Phosphate Biomaterials (Springer, Berlin, 2014), pp. 267-329.  https://doi.org/10.1007/978-3-642-53980-0_9.
  15. 15.
    W. Zhou, Z. Liu, S. Xu, P. Hao, F. Xu, and A. Sun, Long-Term Survivability of Hydroxyapatite-Coated Implants: A Meta-Analysis, Oral Surg., 2011, 4(1), p 2-7.  https://doi.org/10.1111/j.1752-248X.2010.01112.x CrossRefGoogle Scholar
  16. 16.
    S. Lazarinis, K.T. Mäkelä, A. Eskelinen, L. Havelin, G.O. Hallan, S. Overgaard, and N.P. Hailer, Does Hydroxyapatite Coating of Uncemented Cups Improve Long-Term Survival? An Analysis of 28,605 Primary Total Hip Arthroplasty Procedures from the Nordic Arthroplasty Register Association (NARA), Osteoarthr. Cartil., 2017, 25(12), p 1980-1987.  https://doi.org/10.1016/j.joca.2017.08.001 CrossRefGoogle Scholar
  17. 17.
    O. Reikerås and R.B. Gunderson, Failure of HA Coating on a Gritblasted Acetabular Cup: 155 Patients Followed for 7-10 Years, Acta Orthop. Scand., 2002, 73(1), p 104-108.  https://doi.org/10.1080/000164702317281503 CrossRefGoogle Scholar
  18. 18.
    S. Vahabzadeh, M. Roy, A. Bandyopadhyay, and S. Bose, Phase Stability and Biological Property Evaluation of Plasma Sprayed Hydroxyapatite Coatings for Orthopedic and Dental Applications, Acta Biomater., 2015, 17, p 47-55.  https://doi.org/10.1016/j.actbio.2015.01.022 CrossRefGoogle Scholar
  19. 19.
    R. Gadow, A. Killinger, and N. Stiegler, Hydroxyapatite Coatings for Biomedical Applications Deposited by Different Thermal Spray Techniques, Surf. Coat. Technol., 2010, 205(4), p 1157-1164.  https://doi.org/10.1016/j.surfcoat.2010.03.059 CrossRefGoogle Scholar
  20. 20.
    J.A. Hermann-Muñoz, J.A. Rincón-López, G.A. Clavijo-Mejía, A.L. Giraldo-Betancur, J.M Alvarado-Orozco, D. Vizcaya-Ruiz, and J. Muñoz-Saldaña. Influence of HVOF Parameters on HAp Coating Generation: An Integrated Approach Using Process Maps. Submitted October (2018). arXiv:1810.06264[physics.app-ph].
  21. 21.
    K. Balani, Y. Chen, S.P. Harimkar, N.B. Dahotre, and A. Agarwal, Tribological Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Hydroxyapatite Coating in Physiological Solution, Acta Biomater., 2007, 3(6), p 944-951.  https://doi.org/10.1016/j.actbio.2007.06.001 CrossRefGoogle Scholar
  22. 22.
    J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29(7), p 2195-2202.  https://doi.org/10.1016/j.msec.2009.05.001 CrossRefGoogle Scholar
  23. 23.
    H. Melero, M. Torrell, J. Fernández, J.R. Gomes, and J.M. Guilemany, Tribological Characterization of Biocompatible HAp-TiO2 Coatings Obtained by High Velocity Oxy-Fuel Spray, Wear, 2013, 305(1-2), p 8-13CrossRefGoogle Scholar
  24. 24.
    H. Melero Correas, Recubrimientos biocompatibles de Hidroxiapatita-Titania obtenidos mediante Proyección Térmica de Alta Velocidad (HVOF), Ph.D. Thesis, Universitat de Barcelona, Spain, 2014. http://hdl.handle.net/2445/52747. Accessed 1 Oct 2018.
  25. 25.
    R.S. Lima and B.R. Marple, High Weibull Modulus HVOF Titania Coatings, J. Thermal Spray Technol., 2003, 12(2), p 240-249.  https://doi.org/10.1361/105996303770348357 CrossRefGoogle Scholar
  26. 26.
    R.S. Lima and B.R. Marple, Optimized HVOF Titania Coatings, J. Thermal Spray Technol., 2003, 12(3), p 360-369.  https://doi.org/10.1361/105996303770348230 CrossRefGoogle Scholar
  27. 27.
    Z.F. Yin, L. Wu, H.G. Yang, and Y.H. Su, Recent Progress in Biomedical Applications of Titanium Dioxide, Phys. Chem. Chem. Phys., 2013, 15(14), p 4844-4858.  https://doi.org/10.1039/C3CP43938K CrossRefGoogle Scholar
  28. 28.
    H. Melero, J. Fernández, S. Dosta, and J.M. Guilemany, Caracterización de nuevos recubrimientos biocompatibles de hidroxiapatita-TiO2 obtenidos mediante Proyección Térmica de Alta Velocidad. . Characterization of new bioactive coatings of hydroxyapatite and TiO2 obtained by High-Velocity Oxy-Fuel, Boletín de la Sociedad Española de Cerámica y Vidrio, 2011, 50(2), p 59-64CrossRefGoogle Scholar
  29. 29.
    U. Schulz, M. Peters, F.W. Bach, and G. Tegeder, Graded Coatings for Thermal, Wear and Corrosion Barriers, Mater. Sci. Eng. A, 2003, 362(1-2), p 61-80.  https://doi.org/10.1016/S0921-5093(03),00579-3 CrossRefGoogle Scholar
  30. 30.
    H. Li, K.A. Khor, and P. Cheang, Titanium Dioxide Reinforced Hydroxyapatite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray, Biomaterials, 2002, 23(1), p 85-91.  https://doi.org/10.1016/S0142-9612(01)00082-5 CrossRefGoogle Scholar
  31. 31.
    G.A. Clavijo-Mejía, Estudio del recubrimiento enlace en el sistema de recubrimiento TiO2/HAp depositado por rociado térmico (HVOF) para aplicaciones biomédicas, Centro de Investigación y de Estudios Avanzados del IPN—Unidad Querétaro, 2015. Master thesis.Google Scholar
  32. 32.
    Z. Mohammadi, A.A. Ziaei-Moayyed, and A.S.M. Mesgar, Adhesive and Cohesive Properties by Indentation Method of Plasma-Sprayed Hydroxyapatite Coatings, Appl. Surf. Sci., 2007, 253(11), p 4960-4965.  https://doi.org/10.1016/j.apsusc.2006.11.002 CrossRefGoogle Scholar
  33. 33.
    H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155(1), p 21-32.  https://doi.org/10.1016/S0257-8972(02),00026-9 CrossRefGoogle Scholar
  34. 34.
    J. Lesage and D. Chicot, Models for Hardness and Adhesion of Coatings, Surf. Eng., 1999, 15(6), p 447-453CrossRefGoogle Scholar
  35. 35.
    International Standard ISO 23317 for Implants for Surgery—In Vitro Evaluation for Apatite-Forming Ability of Implant Materials, 2014. https://www.iso.org/standard/65054.html. Accessed 1 Oct 2018.
  36. 36.
    J.A. Rincón-López, J.A. Hermann-Muñoz, A.L. Giraldo-Betancur, A. De Vizcaya-Ruiz, J.M. Alvarado-Orozco, and J. Muñoz-Saldaña, Synthesis, Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials, 2018, 11(3), p 333.  https://doi.org/10.3390/ma11030333 CrossRefGoogle Scholar
  37. 37.
    L. Liborio and N. Harrison, Thermodynamics of Oxygen Defective Magnéli Phases in Rutile: A First-Principles Study, Phys. Rev. B, 2008, 77(10), p 104104.  https://doi.org/10.1103/PhysRevB.77.104104 CrossRefGoogle Scholar
  38. 38.
    J. Weng, Q. Liu, J.G.C. Wolke, D. Zhang, and K. de Groot, The Role of Amorphous Phase in Nucleating Bone-Like Apatite on Plasma Sprayed Hydroxyapatite Coatings in Simulated Body fluid, J. Mater. Sci. Lett., 1997, 16, p 335-337.  https://doi.org/10.1023/a:1018529924527 CrossRefGoogle Scholar
  39. 39.
    H.M. Kim, T. Himeno, M. Kawashita, T. Kokubo, and T. Nakamura, The Mechanism of Biomineralization of Bone-Like Apatite on Synthetic Hydroxyapatite: An In-Vitro Assessment, J. R. Soc. Interface., 2004, 1, p 17-22.  https://doi.org/10.1098/rsif.2004.0003 CrossRefGoogle Scholar
  40. 40.
    H.M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, Process and Kinetics of Bonelike Apatite Formation on Sintered Hydroxyapatite in a Simulated Body Fluid, Biomaterials, 2005, 26, p 4366-4373.  https://doi.org/10.1016/j.biomaterials.2004.11.022 CrossRefGoogle Scholar
  41. 41.
    J. Li, H. Liao, and M. Sjsstrom, Characterization of Calcium Phosphates Precipitated from Simulated Body Fluid of Different Buffering Capacities, Biomaterials, 1997, 18(10), p 743-747.  https://doi.org/10.1016/S0142-9612(96)00206-2 CrossRefGoogle Scholar
  42. 42.
    K. Hyakuna, T. Yamamuro, Y. Kotoura, M. Oka, T. Nakamura, T. Kokubo, and H. Kushitani, Surface Reactions of Calcium Phosphate Ceramics to Various Solutions, J. Biomed. Mater. Res., 1990, 24(4), p 471-478.  https://doi.org/10.1002/jbm.820240406 CrossRefGoogle Scholar
  43. 43.
    Y.W. Gu, K.A. Khor, and P. Cheang, In Vitro Studies of Plasma-Sprayed Hydroxyapatite/Ti-6Al-4V Composite Coatings in Simulated Body Fluid (SBF), Biomaterials, 2003, 24(9), p 1603-1611.  https://doi.org/10.1016/S0142-9612(02)00573-2 CrossRefGoogle Scholar
  44. 44.
    A. Dey and A.K. Mukhopadhyay, In Vitro Dissolution, Microstructural and Mechanical Characterizations of Microplasma-Sprayed Hydroxyapatite Coating, Int. J. Appl. Ceram. Technol., 2014, 11(1), p 65-82.  https://doi.org/10.1111/ijac.12057 CrossRefGoogle Scholar
  45. 45.
    R. Gadow, A. Killinger, and N. Stiegler, Hydroxyapatite Coatings for Biomedical Applications Deposited by Different Thermal Spray Techniques, Surf. Coat. Technol., 2010, 205(4), p 1157-1164.  https://doi.org/10.1016/j.surfcoat.2010.03.059 CrossRefGoogle Scholar
  46. 46.
    F.M. Morks and A. Kobayashi, Influence of Spray Parameters on the Features of Gas Tunnel Type Plasma Sprayed Hydroxyapatite Coatings, Trans. JWRI, 2005, 34(2), p 35-39Google Scholar
  47. 47.
    M.F. Hasan, J. Wang, and C. Berndt, Evaluation of the Mechanical Properties of Plasma Sprayed Hydroxyapatite Coatings, Appl. Surf. Sci., 2014, 303, p 155-162.  https://doi.org/10.1016/j.apsusc.2014.02.125 CrossRefGoogle Scholar
  48. 48.
    J. Kiilakoski, R. Musalek, F. Lukac, H. Koivuluoto, and P. Vuoristo, Evaluating the Toughness of APS and HVOF-Sprayed Al2O3-ZrO2-Coatings by In-Situ-and Macroscopic Bending, J. Eur. Ceram. Soc., 2018, 38(4), p 1908-1918.  https://doi.org/10.1016/j.jeurceramsoc.2017.11.056 CrossRefGoogle Scholar
  49. 49.
    C.K. Lin and C.C. Berndt, Statistical Analysis of Microhardness Variations in Thermal Spray Coatings, J. Mater. Sci., 1995, 30(1), p 111-117.  https://doi.org/10.1007/BF00352139 CrossRefGoogle Scholar
  50. 50.
    C. Lin and C. Berndt, Measurement and Analysis of Adhesion Strength for Thermally Sprayed Coatings, J. Therm. Spray Technol., 1994, 3, p 75-104.  https://doi.org/10.1007/bf02649003 CrossRefGoogle Scholar
  51. 51.
    P.J. Callus and C.C. Berndt, Relationships Between the Mode II, Fracture Toughness and Microstructure of Thermal Spray Coatings, Surf. Coat. Technol., 1999, 114, p 114-128.  https://doi.org/10.1016/S0257-8972(99),00018-3 CrossRefGoogle Scholar
  52. 52.
    J. Fernández, M. Gaona, and J.M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, J. Therm. Spray Technol., 2007, 16(2), p 220-228.  https://doi.org/10.1007/s11666-007-9034-7 CrossRefGoogle Scholar
  53. 53.
    Y.C. Yang, E. Chang, and S.Y. Lee, Mechanical Properties and Young’s Modulus of Plasma-Sprayed Hydroxyapatite Coating on Ti Substrate in Simulated Body Fluid, J. Biomed. Mater. Res., 2003, 67A(3), p 886-899.  https://doi.org/10.1002/jbm.a.10145 CrossRefGoogle Scholar
  54. 54.
    Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 1: Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19(22), p 2015-2029.  https://doi.org/10.1016/s0142-9612(98)00103-3 CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. Henao
    • 1
  • M. Cruz-bautista
    • 1
  • J. Hincapie-Bedoya
    • 1
    • 2
  • B. Ortega-Bautista
    • 1
  • J. Corona-Castuera
    • 1
  • A. L. Giraldo-Betancur
    • 2
  • D. G. Espinosa-Arbelaez
    • 3
  • J. M. Alvarado-Orozco
    • 3
    • 4
  • G. A. Clavijo-Mejía
    • 2
    • 5
  • L. G. Trapaga-Martínez
    • 1
  • C. A. Poblano-Salas
    • 1
  1. 1.CONACyT-CIATEQ A.C.El MarquésMexico
  2. 2.CINVESTAV-Unidad QuerétaroCONACyT-Centro de Investigación y de Estudios Avanzados del IPNQuerétaroMexico
  3. 3.Centro de Ingeniería y Desarrollo Indutrial (CIDESI)QuerétaroMexico
  4. 4.Consorcio de Manufactura AditivaCONMADQuerétaroMexico
  5. 5.Institute of Research for Ceramics–IRCER, UMR 7315 CNRS, Centre Européen de la Céramique (CEC)Université de LimogesLimogesFrance

Personalised recommendations