Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 8, pp 1205–1211 | Cite as

Biomaterials: Thermal Spray Processes and Applications

Editorial
  • 17 Downloads

The Pervasive Need for Bioengineering Manufacturing

Notes

Acknowledgments

Co-editors Christopher Berndt and Andrew S.M. Ang acknowledge support from the Australian Research Council (ARC) Centre for Innovative BioEngineering that is based at the University of Sydney, Australia, under Director Prof. Hala Zreiqat. This Centre has been funded under the Industrial Transformation Training Centre (ITTC) scheme. The co-editors thank the authors for their splendid contributions that make this Special Issue “quite special.”

Dedication

Co-editors Christopher Berndt and Andrew S.M. Ang, with the agreement of co-editor Rehan Ahmed and close colleague Prof. Michael Khor (Nanyang Technological University, Singapore), dedicate this JTST Special Issue to Prof. Philip Hong Ning Cheang. Professor Cheang (aka ‘Doc Phil’) graduated from Monash University in 1989 with his PhD thesis titled, “The microstructural and mechanical properties of plasma sprayed coatings.” He passed away on May 15, 2018 from natural causes at the age of 58; far too young. Doc Phil formed a dominant academic and collegial partnership with Prof. Khor at NTU for several decades; the outcomes of which continue to this day with a cadre of former students, including Dr. Ang, who now have good careers in their chosen fields. Together they changed forever the landscape of thermal spray, biomaterials, and cold spray in Singapore with global impacts. Doc Phil grew from being my student, to a colleague, to a mentor and leader in his own right. We are certain that Doc. Phil would smile when we say, “May he rest in peace.”

Guest Editors

Andrew Ang, PhD

Swinburne University of Technology, Australia

Rehan Ahmed, PhD

Herriot Watt University, UK

Christopher C. Berndt, PhD, Deng

Swinburne University of Technology, Australia

References

  1. 1.
    Evaluatemedtech® World Preview 2016, Outlook to 2022 Executive Summary. London, United Kingdom, 2016Google Scholar
  2. 2.
    C.M.D. LLC, Un-Ignorable: China’s Orthopedic Implant Industry, 2018Google Scholar
  3. 3.
    R. Florencio-Silva, G.R.D.S. Sasso, E. Sasso-Cerri, M.J. Simões, and P.S. Cerri, Biology of Bone Tissue: Structure, Function, and Factors that Influence Bone Cells, Biomed. Res. Int., 2015, 21, p 15-50.  https://doi.org/10.1155/2015/421746 CrossRefGoogle Scholar
  4. 4.
    E. Gentleman, Y.C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M.D. O’Donnell, R.G. Hill, and M.M. Stevens, The Effects of Strontium-Substituted Bioactive Glasses on Osteoblasts and Osteoclasts in Vitro, Biomaterials, 2010, 31(14), p 3949-3956.  https://doi.org/10.1016/j.biomaterials.2010.01.121 CrossRefGoogle Scholar
  5. 5.
    S. Pors-Nielsen, The Biological Role of Strontium, Bone, 2004, 35(3), p 583-588.  https://doi.org/10.1016/j.bone.2004.04.026 CrossRefGoogle Scholar
  6. 6.
    H. Zreiqat, Y. Ramaswamy, C. Wu, A. Paschalidis, Z. Lu, B. James, O. Birke, M. McDonald, D. Little, and C.R. Dunstan, The Incorporation of Strontium and Zinc into a Calcium–Silicon Ceramic for Bone Tissue Engineering, Biomaterials, 2010, 31(12), p 3175-3184.  https://doi.org/10.1016/j.biomaterials.2010.01.024 CrossRefGoogle Scholar
  7. 7.
    H. Zreiqat, C. Wu, and C. Dunstan, Biocompatible Material and Uses Thereof. Washington, D.C. Patent No. U.S. Patent No. US8765163B2.: U. S. P. a. T. Office, 2014.Google Scholar
  8. 8.
    B.M. Hidalgo-Robatto, J.J. Aguilera-Correa, M. López-Álvarez, D. Romera, J. Esteban, P. González, and J. Serra, Fluor-Carbonated Hydroxyapatite Coatings by Pulsed Laser Deposition to Promote Cell Viability and Antibacterial Properties, Surf. Coat. Technol., 2018, 349, p 736-744.  https://doi.org/10.1016/j.surfcoat.2018.06.047 CrossRefGoogle Scholar
  9. 9.
    R.R. Behera, A. Das, D. Pamu, L.M. Pandey, and M.R. Sankar, Mechano-Tribological Properties and in Vitro Bioactivity of Biphasic Calcium Phosphate Coating on Ti–6al–4v, J. Mech. Behav. Biomed. Mater., 2018, 86, p 143-157.  https://doi.org/10.1016/j.jmbbm.2018.06.020 CrossRefGoogle Scholar
  10. 10.
    C. Wu, Y. Ramaswamy, D. Gale, W. Yang, K. Xiao, L. Zhang, Y. Yin, and H. Zreiqat, Novel Sphene Coatings on Ti–6al–4v for Orthopedic Implants Using Sol–Gel Method, Acta Biomater., 2008, 4(3), p 569-576.  https://doi.org/10.1016/j.actbio.2007.11.005 CrossRefGoogle Scholar
  11. 11.
    T.N. Kim, Q.L. Feng, Z.S. Luo, F.Z. Cui, and J.O. Kim, Highly Adhesive Hydroxyapatite Coatings on Alumina Substrates Prepared by Ion-Beam Assisted Deposition, Surf. Coat. Technol., 1998, 99(1), p 20-23.  https://doi.org/10.1016/S0257-8972(97)00121-7 CrossRefGoogle Scholar
  12. 12.
    X. Ye, S. Cai, Y. Dou, G. Xu, K. Huang, M. Ren, and X. Wang, Bioactive Glass-Ceramic Coating for Enhancing the in Vitro Corrosion Resistance of Biodegradable Mg Alloy, Appl. Surf. Sci., 2012, 259, p 799-805.  https://doi.org/10.1016/j.apsusc.2012.07.127 CrossRefGoogle Scholar
  13. 13.
    R.R. Wang, G.E. Welsch, and O. Monteiro, Silicon Nitride Coating on Titanium to Enable Titanium–Ceramic Bonding, J. Biomed. Mater. Res., 1999, 46(2), p 262-270.  https://doi.org/10.1002/(sici)1097-4636(199908)46:2<262::aid-jbm16>3.0.co;2-1 CrossRefGoogle Scholar
  14. 14.
    E. Salahinejad and R. Vahedifard, Deposition of Nanodiopside Coatings on Metallic Biomaterials to Stimulate Apatite-Forming Ability, Mater. Des., 2017, 123, p 120-127.  https://doi.org/10.1016/j.matdes.2017.03.047 CrossRefGoogle Scholar
  15. 15.
    V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Laser-Assisted Zr/Zro2 Coating on Ti for Load-Bearing Implants, Acta Biomater., 2009, 5(7), p 2800-2809.  https://doi.org/10.1016/j.actbio.2009.03.032 CrossRefGoogle Scholar
  16. 16.
    H.-W. Kim, H.-E. Kim, and J.C. Knowles, Fluor-Hydroxyapatite Sol–Gel Coating on Titanium Substrate for Hard Tissue Implants, Biomaterials, 2004, 25(17), p 3351-3358.  https://doi.org/10.1016/j.biomaterials.2003.09.104 CrossRefGoogle Scholar
  17. 17.
    D. Qiu, A. Wang, and Y. Yin, Characterization and Corrosion Behavior of Hydroxyapatite/Zirconia Composite Coating on Niti Fabricated by Electrochemical Deposition, Appl. Surf. Sci., 2010, 257(5), p 1774-1778.  https://doi.org/10.1016/j.apsusc.2010.09.014 CrossRefGoogle Scholar
  18. 18.
    C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man, Characterization and Corrosion Behavior of Hydroxyapatite Coatings on Ti–6al–4v Fabricated by Electrophoretic Deposition, Appl. Surf. Sci., 2009, 255(13), p 6736-6744.  https://doi.org/10.1016/j.apsusc.2009.02.086 CrossRefGoogle Scholar
  19. 19.
    H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Kasiri-Asgarani, E. Akbari, S. Jabbarzare, A. Najafinezhad, and Z. Hadisi, Synthesis of a Novel Nanostructured Zinc Oxide/Baghdadite Coating on Mg Alloy for Biomedical Application: In-Vitro Degradation Behavior and Antibacterial Activities, Ceram. Int., 2017, 43(17), p 14842-14850.  https://doi.org/10.1016/j.ceramint.2017.07.233 CrossRefGoogle Scholar
  20. 20.
    G. Bolelli, N. Stiegler, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and A. Sola, Deposition Mechanisms in High Velocity Suspension Spraying: Case Study for Two Bioactive Materials, Surf. Coat. Technol., 2012, 210, p 28-45.  https://doi.org/10.1016/j.surfcoat.2012.08.046 CrossRefGoogle Scholar
  21. 21.
    P. Krieg, A. Killinger, R. Gadow, S. Burtscher, and A. Bernstein, High Velocity Suspension Flame Spraying (Hvsfs) of Metal Doped Bioceramic Coatings, Bioactive Materials, 2017, 2(3), p 162-169.  https://doi.org/10.1016/j.bioactmat.2017.04.006 CrossRefGoogle Scholar
  22. 22.
    H. Farnoush, F. Muhaffel, and H. Cimenoglu, Fabrication and Characterization of Nano-Ha-45s5 Bioglass Composite Coatings on Calcium-Phosphate Containing Micro-Arc Oxidized Cp-Ti Substrates, Appl. Surf. Sci., 2015, 324, p 765-774.  https://doi.org/10.1016/j.apsusc.2014.11.032 CrossRefGoogle Scholar
  23. 23.
    W. Zhang, G. Wang, Y. Liu, X. Zhao, D. Zou, C. Zhu, Y. Jin, Q. Huang, J. Sun, X. Liu, X. Jiang, and H. Zreiqat, The Synergistic Effect of Hierarchical Micro/Nano-Topography and Bioactive Ions for Enhanced Osseointegration, Biomaterials, 2013, 34(13), p 3184-3195.  https://doi.org/10.1016/j.biomaterials.2013.01.008 CrossRefGoogle Scholar
  24. 24.
    G. Bolelli, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, P. Müller, and A. Sola, Comparison between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed Bioactive Coatings, Surf. Coat. Technol., 2015, 280, p 232-249.  https://doi.org/10.1016/j.surfcoat.2015.08.039 CrossRefGoogle Scholar
  25. 25.
    G. Bolelli, D. Bellucci, V. Cannillo, L. Lusvarghi, A. Sola, N. Stiegler, P. Müller, A. Killinger, R. Gadow, L. Altomare, and L. De Nardo, Suspension Thermal Spraying of Hydroxyapatite: Microstructure and in Vitro Behaviour, Mater. Sci. Eng., C, 2014, 34, p 287-303.  https://doi.org/10.1016/j.msec.2013.09.017 CrossRefGoogle Scholar
  26. 26.
    A. Fomin, M. Fomina, V. Koshuro, I. Rodionov, A. Zakharevich, and A. Skaptsov, Structure and Mechanical Properties of Hydroxyapatite Coatings Produced on Titanium Using Plasma Spraying with Induction Preheating, Ceram. Int., 2017, 43(14), p 11189-11196.  https://doi.org/10.1016/j.ceramint.2017.05.168 CrossRefGoogle Scholar
  27. 27.
    F. Baino and C. Vitale-Brovarone, Feasibility of Glass-Ceramic Coatings On Alumina Prosthetic Implants By Airbrush Spraying Method, Ceramics International Part A, 2015, 41(2), p 2150-2159.  https://doi.org/10.1016/j.ceramint.2014.10.015 CrossRefGoogle Scholar
  28. 28.
    L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58(5), p 570-592.  https://doi.org/10.1002/jbm.1056 CrossRefGoogle Scholar
  29. 29.
    G. Zhao, L. Xia, B. Zhong, G. Wen, L. Song, and X. Wang, Effect of Milling Conditions on the Properties of Ha/Ti Feedstock Powders and Plasma-Sprayed Coatings, Surf. Coat. Technol., 2014, 251, p 38-47.  https://doi.org/10.1016/j.surfcoat.2014.02.028 CrossRefGoogle Scholar
  30. 30.
    R.S. Pillai, M. Frasnelli, and V.M. Sglavo, Ha/Β-Tcp Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceram. Int., 2018, 44(2), p 1328-1333.  https://doi.org/10.1016/j.ceramint.2017.08.113 CrossRefGoogle Scholar
  31. 31.
    E. Garcia, P. Miranzo, and M.A. Sainz, Thermally Sprayed Wollastonite and Wollastonite-Diopside Compositions as New Modulated Bioactive Coatings for Metal Implants, Ceram. Int., 2018, 44(11), p 12896-12904.  https://doi.org/10.1016/j.ceramint.2018.04.100 CrossRefGoogle Scholar
  32. 32.
    Y. Liang, Y. Xie, H. Ji, L. Huang, and X. Zheng, Excellent Stability of Plasma-Sprayed Bioactive Ca3zrsi2o9 Ceramic Coating on Ti–6al–4v, Appl. Surf. Sci., 2010, 256(14), p 4677-4681.  https://doi.org/10.1016/j.apsusc.2010.02.071 CrossRefGoogle Scholar
  33. 33.
    W. Xue, X. Liu, X. Zheng, and C. Ding, Plasma-Sprayed Diopside Coatings for Biomedical Applications, Surf. Coat. Technol., 2004, 185(2), p 340-345.  https://doi.org/10.1016/j.surfcoat.2003.12.018 CrossRefGoogle Scholar
  34. 34.
    M. Razavi, M. Fathi, O. Savabi, B.H. Beni, S.M. Razavi, D. Vashaee, and L. Tayebi, Coating of Biodegradable Magnesium Alloy Bone Implants Using Nanostructured Diopside (Camgsi2o6), Appl. Surf. Sci., 2014, 288, p 130-137.  https://doi.org/10.1016/j.apsusc.2013.09.160 CrossRefGoogle Scholar
  35. 35.
    X. Liu, S. Tao, and C. Ding, Bioactivity of Plasma Sprayed Dicalcium Silicate Coatings, Biomaterials, 2002, 23(3), p 963-968.  https://doi.org/10.1016/S0142-9612(01)00210-1 CrossRefGoogle Scholar
  36. 36.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440.  https://doi.org/10.1007/s11666-016-0473-x CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Personalised recommendations