Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 314–323 | Cite as

Characterization of Plasma-Sprayed Zirconium Coatings on Uranium Alloy Using Neutron Diffraction

  • Kendall J. HollisEmail author
  • Dustin R. Cummins
  • Sven C. Vogel
  • David E. Dombrowski
Peer Reviewed
  • 40 Downloads

Abstract

Plasma-sprayed zirconium (Zr) metal coatings onto uranium-molybdenum (U-Mo) alloy nuclear reactor fuel foils act as a diffusion barrier between the fuel and the aluminum fuel cladding. Neutron diffraction was performed to investigate the crystallographic phase composition, crystal orientations, and lattice parameters of the plasma-sprayed Zr and the U-Mo substrate. The neutron diffraction results show that the plasma-sprayed Zr coating is crystalline, is phase pure (alpha-Zr), and has preferred crystalline orientation due to directional solidification influenced by the substrate crystalline orientation. Also, there is a slight (~ 0.01 Å for a direction and ~ 0.016 Å for c direction) increase in the plasma-sprayed Zr lattice parameter indicating oxygen in the lattice and some residual thermo-mechanical strain. There is little or no modification of the underlying U-Mo following plasma spraying. In particular, there is no detectable allotropic transformation of the starting gamma-U (body-centered cubic) to alpha-U (orthorhombic). The unique neutron diffraction capabilities at LANL are well suited for nuclear fuel characterization offering distinct advantages over conventional x-ray diffraction and destructive metallography.

Keywords

crystallographic texture lattice distortion neutron diffraction plasma spray 

Notes

Acknowledgments

This work is supported financially by the U.S. Department of Energy/National Nuclear Security Administration’s M3 Reactor Conversion Program. Los Alamos National Laboratory, and affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC for DOE/NNSA under contract DE-AC52-06NA25396.

References

  1. 1.
    M.K. Meyer, J. Gan, J.F. Jue, D.D. Keiser, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, and Y.S. Kim, Irradiation Performance of U-Mo Monolithic Fuel, Nucl. Eng. Technol., 2014, 46(2), p 169-182CrossRefGoogle Scholar
  2. 2.
    Fuel Specification for MP-1, MP-2 and FSP-1, Idaho National Laboratory Document SPC-1691, Revision 4, 2017, p. 14.Google Scholar
  3. 3.
    H.L. Yakel, A Review of X-ray Diffraction Studies in Uranium Alloys, Oak Ridge National Laboratory Report Conference 740205—9, in Proceedings of the Physical Metallurgy of Uranium Alloys Conference, (AEC Army Material and Mechanical Research Center, Vail, CO, USA, 1974).Google Scholar
  4. 4.
    A. Berche, N. Dupin, C. Gueneau, C. Rado, B. Sudman, and J. Dumas, Calphad Thermodynamic Description of Some Binary Systems Involving U, J. Nucl. Mater., 2011, 411(1), p 131-143CrossRefGoogle Scholar
  5. 5.
    A.E. Dwight, The Uranium-Molybdenum Equilibrium Diagram Below 900-Degrees-C, J. Nucl. Mater., 1960, 2(1), p 81-87CrossRefGoogle Scholar
  6. 6.
    S.C. Vogel, A Review of Neutron Scattering Applications to Nuclear Materials, ISRN Mater. Sci., 2013, 2013, art. no. 302408.  https://doi.org/10.1155/2013/302408
  7. 7.
    S. Matthies, J. Pehl, H.-R. Wenk, L. Lutterotti, and S.C. Vogel, Quantitative Texture Analysis with the HIPPO Neutron TOF Diffractometer, J. Appl. Crystallogr., 2005, 38(3), p 462-475CrossRefGoogle Scholar
  8. 8.
    H.R. Wenk, L. Lutterotti, and S.C. Vogel, Rietveld Texture Analysis from TOF Neutron Diffraction Data, Powder Diffr., 2010, 25(3), p 283-296CrossRefGoogle Scholar
  9. 9.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004, p 75Google Scholar
  10. 10.
    A.C. Larson and R.B Von Dreele, in General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LA-UR-86-748 (2000), p. 132.Google Scholar
  11. 11.
    H.R. Wenk, I. Lonardelli, and D. Williams, Texture Changes in the hcp-bcc-hcp Transformation of Zirconium Studied In Situ by Neutron Diffraction, Acta Mater., 2004, 52, p 1899-1907CrossRefGoogle Scholar
  12. 12.
    W.G. Bergers, On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Close-Packed Modification of Zirconium, Physica, 1934, 1(7-12), p 561-586CrossRefGoogle Scholar
  13. 13.
    L. Chen, L. Gao, and G.J. Yang, Imaging Slit Pores Under Delaminated Splats by White Light Interference, J. Therm. Spray Technol., 2018, 27(3), p 319-335CrossRefGoogle Scholar
  14. 14.
    S. Takajo, K.J. Hollis, D.R. Cummins, E.L. Tegtmeier, D.E. Dombrowski, and S.C. Vogel, Texture Evolution in U-10Mo Nuclear Fuel Foils during Plasma Spray Coating with Zr, Quantum Beam Sci., 2018, 2(2), p 12-23CrossRefGoogle Scholar
  15. 15.
    M.V. Glazoff, Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: A Multi-Scale Computational Study, Idaho National Laboratory report INL/EXT-14-32426, 2014, pp. 26-27.Google Scholar
  16. 16.
    M.V. Glazoff, A. Tokuhiro, S.N. Rashkeev, and P. Sabharwall, Oxidation and Hydrogen Uptake in Zirconium, Zircaloy-2 and Zircaloy-4: Computational Thermodynamics and ab initio Calculations, J. Nucl. Mater., 2014, 444, p 65-75CrossRefGoogle Scholar
  17. 17.
    B.D. Lichter, Precision Lattice Parameter Determination of Zirconium-Oxygen Solid Solution, Trans. Metall. Soc. AIME, 1960, 218, p 1015-1018Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Kendall J. Hollis
    • 1
    Email author
  • Dustin R. Cummins
    • 1
  • Sven C. Vogel
    • 1
  • David E. Dombrowski
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations