Hybrid Suspension/Solution Precursor Plasma Spraying of a Complex Ba(Mg1/3Ta2/3)O3 Perovskite: Effects of Processing Parameters and Precursor Chemistry on Phase Formation and Decomposition

  • Huidong Hou
  • Jocelyn VeilleuxEmail author
  • François Gitzhofer
  • Quansheng Wang
  • Ying liu
Peer Reviewed


Ba(Mg1/3Ta2/3)O3 (BMT) has a high melting point and is envisioned as a thermal barrier coating material. In this study, a hybrid suspension/solution precursor plasma spray process with a radio frequency thermal plasma torch is designed to deposit BMT nanostructured coatings. Six combinations of chemical reagents are investigated as coating precursors: one BMT powder suspension and five Ta2O5 suspensions in nitrate- or acetate-based solutions. X-ray photoelectron spectroscopy is used to evaluate the element evaporation during plasma spraying, while a thermogravimetric/differential thermal analysis is applied to investigate the BMT formation. Parameters such as precursor chemistry, plasma power, spraying distance and substrate preheating are studied with regard to the coating phase structure. Twice the Mg stoichiometric amount with a power of 50 kW shows the best results when using nanocrystallized Ta2O5 as a tantalum precursor. When choosing nitrates as Ba and Mg precursors, crystallized BMT is obtained at lower plasma power (45 kW) when compared to acetates (50 kW). BaTa2O6, Ba3Ta5O15, Ba4Ta2O9, Mg4Ta2O9 are the main secondary phases observed during the BMT coatings deposition. Because of the complicated acetate decomposition process, the coating deposition rate from nitrate precursors is 1.56 times higher than that from acetate precursors.


BMT decomposition hybrid SPS/SPPS precursor chemistry spraying parameters 



The financial support by the Fonds de recherche du Québec—Nature et technologies (FRQNT), the Natural Sciences and Engineering Research Council of Canada (NSERC) and Université de Sherbrooke is gratefully acknowledged. The authors also appreciate the technical support from Kossi Béré.


  1. 1.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284CrossRefGoogle Scholar
  2. 2.
    X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10CrossRefGoogle Scholar
  3. 3.
    R. Guo, A.S. Bhalla, and L.E. Cross, Ba(Mg1/3Ta2/3)O3 Single Crystal Fiber Grown by the Laser-Heated Pedestal Growth Technique, J. Appl. Phys., 1994, 75(9), p 4704-4708CrossRefGoogle Scholar
  4. 4.
    C. Jinga, E. Andronescu, S. Jinga, A. Ioachim, L. Nedelcu, and M. Toacsan, Synthesis and Characterization of Doped Ba (Mg1/3Ta2/3) O3 Ceramics, J. Optoelectron. Adv. Mater., 2010, 12(2), p 282-287Google Scholar
  5. 5.
    M.O. Jarligo, D.E. Mack, R. Vassen, and D. Stover, Application of Plasma-Sprayed Complex Perovskites as Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 187-193CrossRefGoogle Scholar
  6. 6.
    M.O. Jarligo, D.E. Mack, G. Mauer, R. Vassen, and D. Stoever, Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application, J. Therm. Spray Technol., 2010, 19(1–2), p 303-310CrossRefGoogle Scholar
  7. 7.
    M.O. Jarligo, G. Mauer, D. Sebold, D.E. Mack, R. Vassen, and D. Stoever, Decomposition of Ba(Mg1/3Ta2/3)O3 Perovskite During Atmospheric Plasma Spraying, Surf. Coat. Technol., 2012, 206(8–9), p 2515-2520CrossRefGoogle Scholar
  8. 8.
    F. Gitzhofer, E. Bouyer, and M.I. Boulos, Suspension Plasma Spray, Patent US5609921A, 1997Google Scholar
  9. 9.
    E.H. Jordan, C. Jiang, and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 24(7), p 1153-1165CrossRefGoogle Scholar
  10. 10.
    A. Ganvir, C. Kumara, M. Gupta, and P. Nylen, Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments, J. Therm. Spray Technol., 2017, 26(1), p 71-82CrossRefGoogle Scholar
  11. 11.
    É. Darthout, A. Quet, N. Braidy, and F. Gitzhofer, Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry, J. Therm. Spray Technol., 2013, 23(3), p 325-332CrossRefGoogle Scholar
  12. 12.
    É. Darthout, G. Laduye, and F. Gitzhofer, Processing Parameter Effects and Thermal Properties of Y2Si2O7 Nanostructured Environmental Barrier Coatings Synthesized by Solution Precursor Induction Plasma Spraying, J. Therm. Spray Technol., 2016, 25(7), p 1264-1279CrossRefGoogle Scholar
  13. 13.
    A. Guignard, G. Mauer, R. Vassen, and D. Stoever, Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21(3–4), p 416-424CrossRefGoogle Scholar
  14. 14.
    P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129CrossRefGoogle Scholar
  15. 15.
    L. Jia and F. Gitzhofer, Induction Plasma Synthesis of Nano-structured SOFCs Electrolyte Using Solution and Suspension Plasma Spraying: A Comparative Study, J. Therm. Spray Technol., 2010, 19(3), p 566-574CrossRefGoogle Scholar
  16. 16.
    M. Marr, J. Kuhn, C. Metcalfe, J. Harris, and O. Kesler, Electrochemical Performance of Solid Oxide Fuel Cells Having Electrolytes Made by Suspension and Solution Precursor Plasma Spraying, J. Power Sources, 2014, 245, p 398-405CrossRefGoogle Scholar
  17. 17.
    K. Major, J. Veilleux, and G. Brisard, Lithium Iron Phosphate Powders and Coatings Obtained by Means of Inductively Coupled Thermal Plasma, J. Therm. Spray Technol., 2016, 25(1–2), p 357-364CrossRefGoogle Scholar
  18. 18.
    H. Hou, X. Ning, Q. Wang, Y. Liu, and Y. Liu, Anti-ablation Behavior of Air Plasma-Sprayed Mo(Si, Al)2 Coating, Surf. Coat. Technol., 2015, 274, p 60-67CrossRefGoogle Scholar
  19. 19.
    J. Guo, X. Fan, R. Dolbec, S. Xue, J. Jurewicz, and M. Boulos, Development of Nanopowder Synthesis Using Induction Plasma, Plasma Sci. Technol., 2010, 12(2), p 188-199CrossRefGoogle Scholar
  20. 20.
    K. Matsumoto, T. Hiuga, K. Takada, and H. Ichimura, Ba (Mg1/3Ta2/3)O3 Ceramics with Ultra-Low Loss at Microwave Frequencies, Sixth IEEE International Symposium on Applications of Ferroelectrics, 1986, IEEE, New York, p 118-121Google Scholar
  21. 21.
    S. Janaswamy, G. Sreenivasa Murthy, E.D. Dias, and V.R.K. Murthy, Structural Analysis of BaMg1/3(Ta,Nb)2/3O3 Ceramics, Mater. Lett., 2002, 55(6), p 414-419CrossRefGoogle Scholar
  22. 22.
    D.R. Lide, Ed., CRC Handbook of Chemistry and Physics. Section 6: Fluid Properties: Vapor Pressure, 84th ed., CRC Press, Boca Raton, 2003Google Scholar
  23. 23.
    G.K. Layden, Polymorphism of BaTa2O6, Mater. Res. Bull., 1967, 2(5), p 533-539CrossRefGoogle Scholar
  24. 24.
    T. Kolodiazhnyi, A.A. Belik, T.C. Ozawa, and E. Takayama-Muromachi, Phase Equilibria in the BaO-MgO-Ta2O5 System, J. Mater. Chem., 2009, 19(43), p 8212-8215CrossRefGoogle Scholar
  25. 25.
    Y. Baskin and D.C. Schell, Phase Studies in the Binary System MgO-Ta2O5, J. Am. Ceram. Soc., 1963, 46(4), p 174-177CrossRefGoogle Scholar
  26. 26.
    D. Sun, S. Senz, and D. Hesse, Topotaxial Formation of Mg4Ta2O9 and MgTa2O6 Thin Films by Vapour-Solid Reactions on MgO (001) Crystals, J. Eur. Ceram. Soc., 2004, 24(8), p 2453-2463CrossRefGoogle Scholar
  27. 27.
    G. Schiller, M. Muller, and F. Gitzhofer, Preparation of Perovskite Powders and Coatings by Radio Frequency Suspension Plasma Spraying, J. Therm. Spray Technol., 1999, 8(3), p 389-392CrossRefGoogle Scholar
  28. 28.
    T.V. Kolodiazhnyi, A. Petric, G.P. Johari, and A.G. Belous, Effect of Preparation Conditions on Cation Ordering and Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Ceramics, J. Eur. Ceram. Soc., 2002, 22(12), p 2013-2021CrossRefGoogle Scholar
  29. 29.
    Y. Fang, A. Hu, S. Ouyang, and J.J. Oh, The Effect of Calcination on the Microwave Dielectric Properties of Ba (Mg1/3Ta2/3)O3, J. Eur. Ceram. Soc., 2001, 21(15), p 2745-2750CrossRefGoogle Scholar
  30. 30.
    Y. Fang, A. Hu, Y. Gu, and Y.-J. Oh, Synthesis of Ba(Mg1/3Ta2/3)O3 Microwave Dielectrics by Solid State Processing, J. Eur. Ceram. Soc., 2003, 23(14), p 2497-2502CrossRefGoogle Scholar
  31. 31.
    C.H. Lu and C.C. Tsai, Reaction Kinetics, Sintering Characteristics, and Ordering Behavior of Microwave Dielectrics: Barium Magnesium Tantalate, J. Mater. Res., 1996, 11(5), p 1219-1227CrossRefGoogle Scholar
  32. 32.
    M. Afzal, P. Butt, and H. Ahmad, Kinetics of Thermal Decomposition of Metal Acetates, J. Therm. Anal. Calorim., 1991, 37(5), p 1015-1023CrossRefGoogle Scholar
  33. 33.
    K.P. Surendran, P.C.R. Varma, and M.R. Varma, Solid State and Solution Synthesis of Ba(Mg1/3Ta2/3)O3: A Comparative Study, Mater. Res. Bull., 2007, 42(10), p 1831-1844CrossRefGoogle Scholar
  34. 34.
    G. Sivakumar, M. Ramakrishna, R.O. Dusane, and S.V. Joshi, Effect of SPPS Process Parameters on In-Flight Particle Generation and Splat Formation to Achieve Pure α-Al2O3 Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1221-1234CrossRefGoogle Scholar
  35. 35.
    G. Sivakumar, R.O. Dusane, and S.V. Joshi, In Situ Particle Generation and Splat Formation During Solution Precursor Plasma Spraying of Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2011, 94(12), p 4191-4199CrossRefGoogle Scholar
  36. 36.
    H.M. Ismail and G.A.M. Hussein, Texture Properties of Yttrium Oxides Generated from Different Inorganic Precursors, Powder Technol., 1996, 87(1), p 87-92CrossRefGoogle Scholar
  37. 37.
    P. Sokołowski, S. Kozerski, L. Pawłowski, and A. Ambroziak, The Key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106CrossRefGoogle Scholar
  38. 38.
    J.Oberste Berghaus, S. Bouaricha, J.G. Legoux, and C. Moreau, Injection Conditions and In-Flight Particle States in Suspension Plasma Spraying of Alumina and Zirconia Nano-Ceramics, Proceedings of the International Thermal Spray Conference, C. Berndt and E. Lugsheider, Ed., May 2-4, 2005 (Basel Switzerland), ASM International, 2005Google Scholar
  39. 39.
    X. Chen, S. Kuroda, T. Ohnuki, H. Araki, M. Watanabe, and Y. Sakka, Effects of Processing Parameters on the Deposition of Yttria Partially Stabilized Zirconia Coating During Suspension Plasma Spray, J. Am. Ceram. Soc., 2016, 99(11), p 3546-3555CrossRefGoogle Scholar
  40. 40.
    X.L. Jiang and M. Boulos, Induction plasma spheroidization of tungsten and molybdenum powders, Trans. Nonferr. Met. Soc. China, 2006, 16(1), p 13-17CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Huidong Hou
    • 1
    • 2
  • Jocelyn Veilleux
    • 1
    Email author
  • François Gitzhofer
    • 1
  • Quansheng Wang
    • 2
  • Ying liu
    • 2
  1. 1.University of SherbrookeSherbrookeCanada
  2. 2.Beijing Institute of TechnologyBeijingChina

Personalised recommendations