Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 3–11 | Cite as

An Optical Emission Spectroscopy Study of Plasma–Precursor Interactions in Solution Precursor Plasma Spray

  • Jérôme Menneveux
  • Jocelyn VeilleuxEmail author
Peer Reviewed


In this work, optical emission spectroscopy is used to study plasma–liquid precursor interactions in a plasma spray process. A mapping of the plasma jet is performed with a bundle of seven optical fibers while injecting various liquid precursors. The decomposition of two suspensions containing a titania (TiO2) powder in different solvents and that of one solution containing titanium butoxide is analyzed inside a radio frequency thermal plasma. For each precursor, the evolution of both temperature and titanium density along the plasma jet is observed. Two different plasma compositions were used to study their effects on the precursor decomposition. For each experiment, x-ray diffraction was performed on the collected powder to correlate OES observations with the structure and composition of the powder. Comparing these results brings a new understanding of the precursor decomposition inside the plasma, while the noted contrasts between water and ethanol as solvent, and between the use of a powder and that of an alkoxide as a source of titanium, help to assess the effect of these parameters on the plasma spray process.


optical emission spectroscopy plasma–precursor interactions solution precursor plasma spray suspension plasma spray titanium dioxide 



The financial support by the Fonds de recherche du Québec - Nature et technologies (FRQNT), the Natural Sciences and Engineering Research Council of Canada (NSERC) and Université de Sherbrooke is gratefully acknowledged. The authors also appreciate the technical support from Kossi Béré.


  1. 1.
    M. Gell, L. Xie, X. Ma, E.H. Jordan, and N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177-178, p 97-102CrossRefGoogle Scholar
  2. 2.
    S. Bastien and N. Braidy, Controlled Synthesis of Nickel Ferrite Nanocrystals with Tunable Properties Using a Novel Induction Thermal Plasma Method, J. Appl. Phys., 2014, 114(21), p 1-8Google Scholar
  3. 3.
    B. Pateyron, N. Calve, and L. Pawlowski, Influence of Water and Ethanol on Transport Properties of the Jets Used in Suspension Plasma Spraying, Surf. Coat. Technol., 2013, 220, p 257-260CrossRefGoogle Scholar
  4. 4.
    P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D Appl. Phys., 2013, 46(22), p 224015CrossRefGoogle Scholar
  5. 5.
    D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138CrossRefGoogle Scholar
  6. 6.
    D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, Am. Ceram. Soc., 2008, 91(3), p 865-872CrossRefGoogle Scholar
  7. 7.
    D. Chen, E.H. Jordan, and M. Gell, Porous TiO2 Coating Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(24), p 6113-6119CrossRefGoogle Scholar
  8. 8.
    D. Chen, E.H. Jordan, and M. Gell, The Solution Precursor Plasma Spray Coatings: Influence of Solvent Type, Plasma Chem. Plasma Process., 2010, 30(1), p 111-119CrossRefGoogle Scholar
  9. 9.
    L. Du, T.W. Coyle, K. Chien, L. Pershin, T. Li, and M. Golozar, Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process, J. Therm. Spray Technol., 2015, 24(6), p 915-924CrossRefGoogle Scholar
  10. 10.
    D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46(4), p 855-874CrossRefGoogle Scholar
  11. 11.
    National Institute of Standards and Technology, Accessed Sept 2017
  12. 12.
    A.W. Irwin, Polynomial Partition Function Approximation of 344 Atomic and Molecular Species, Astrophys. J. Suppl. Ser., 1981, 45, p 621-633CrossRefGoogle Scholar
  13. 13.
    N.K. Joshi, S.N. Sahasrabudhe, K.P. Sreekumar, and N. Venkatramani, Variation of Axial Temperature in Thermal Plasma Jets, Meas. Sci. Technol., 1997, 8(10), p 1146-1150CrossRefGoogle Scholar
  14. 14.
    F. Bourg, S. Pellerin, D. Morvan, J. Amouroux, and J. Chapelle, Study of an Argon-Hydrogen RF Inductive Thermal Plasma Torch Used for Silicon Deposition by Optical Emission Spectroscopy, Sol. Energy Mater. Sol. Cells, 2002, 72(1-4), p 361-371CrossRefGoogle Scholar
  15. 15.
    G. Mauer and R. Vaßen, Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties, J. Phys. Conf. Ser., 2012, 406, p 1-12CrossRefGoogle Scholar
  16. 16.
    C.G. Parigger, A.C. Woods, D.M. Surmick, G. Gautam, M.J. Witte, and J.O. Hornkohl, Computation of Diatomic Molecular Spectra for Selected Transitions of Aluminum Monoxide, Cyanide, Diatomic Carbon, and Titanium Monoxide, Spectrochim. Acta Part B At. Spectrosc., 2015, 107, p 132-138CrossRefGoogle Scholar
  17. 17.
    J. Hermann, A. Perrone, and C. Dutouquet, Analyses of the TiO-γ System for Temperature Measurements in a Laser-Induced Plasma, J. Phys. B At. Mol. Opt. Phys., 2001, 34(2), p 153-164CrossRefGoogle Scholar
  18. 18.
    R.A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., 1957, 29(5), p 760-762CrossRefGoogle Scholar
  19. 19.
    Y. Li and T. Ishigaki, Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt, J. Cryst. Growth, 2002, 242(3), p 511-516CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Université de SherbrookeSherbrookeCanada

Personalised recommendations