Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 108–123 | Cite as

Modeling the Continuous Heat Generation in the Cold Spray Coating Process

  • Ozan C. OzdemirEmail author
  • Qiyong Chen
  • Sinan Muftu
  • Victor K. ChampagneJr.
Peer Reviewed
  • 112 Downloads

Abstract

In cold spray, 5-150-µm particles (of metal, ceramic, composite, and other materials) are accelerated to supersonic velocities through a de Laval nozzle with an inert gas (generally He or N2) that can reach 1000 °C. In the process, the gas jet impingement on the target and the extreme plastic deformation of impacting particles cause heat generation in the coating layers and the substrate. The heat generation has been argued to cause residual stress, which may cause coating–substrate delamination. In this study, heat generation due to gas impingement and particle plastic deformation has been predicted from CFD and FEA simulations, respectively. Furthermore, a finite volume method has been presented for transiently simulating the coating buildup and bulk heat generation in the coating and the substrate. The model is intended to assist researchers to understand thermal affects in the coating process and help design more informed coating patterns to reduce negative thermal effects.

Keywords

Al 6061 CFD cold spray FEA heat generation simulation 

List of symbols

\(A\)

Cell surface area (m2)

\(Bi\)

Biot number

\(C_{\text{m}}\)

Solid material specific heat capacity \(( {\text{J}}/({\text{kg}}\;^\circ {\text{K}}))\)

\(C_{\text{p}}\)

Fluid specific heat capacity \(( {\text{J}}/({\text{kg}}\;^\circ {\text{K}}))\)

\(D_{\text{e}}\)

Nozzle exit diameter (m)

\(h_{\text{f}}\)

Heat transfer coefficient \(( {\text{W}}/({\text{m}}^{2} \,^\circ {\text{K}}))\)

\(i\)

x-axis index notation

\(j\)

y-axis index notation

\(k\)

z-axis index notation

\(k_{\text{f}}\)

Fluid thermal conductivity \(( {\text{W}}/({\text{m}}\,^\circ {\text{K}}))\)

\(L_{\text{ch}}\)

Characteristic length (m)

\(m_{\text{m}}\)

Cell mass (kg)

\(m_{\text{in}}\)

Mass input into the domain (kg)

\(\dot{m}_{\text{in}}\)

Mass flux into the domain (deposition rate) (kg/s)

\(n\)

Computational approximation factor

\(\overline{Nu}_{\text{L}}\)

Average Nusselt number over a flat plate

\(Nu_{\text{jet}}\)

Local Nusselt number on flat plate in impinging jet zone

\(Pr\)

Prandtl number

\(r\)

Radial distance from nozzle axis (m)

\(Re_{\text{L}}\)

Reynolds number over flat plate

\(Re_{\text{jet}}\)

Reynolds number for jet flow

\(\dot{q}\)

Heat flux (W)

\(\dot{q}_{\text{surf}}\)

Surface heat flux (W)

\(\dot{q}_{\text{cond}}\)

Conductive surface heat flux (W)

\(\sum \dot{q}_{\text{conv}}\)

Convective surface heat flux (W)

\(S_{\text{impact}}\)

Thermal energy source generated from particle impact (W)

\(\varvec{S}_{{\varvec{impact}}}\)

Thermal energy source generated from particle impact per volume \(( {\text{W/m}}^{3} )\)

\(t\)

Time (s)

\(T\)

Temperature (°K)

\(T_{\text{m}}\)

Melting temperature (°K)

\(T_{\text{ref}}\)

Reference fluid temperature (°K)

\(T_{\text{room}}\)

Room temperature (°K)

\(U_{\text{pi}}\)

Particle impact velocity (m/s)

\(U_{\infty }\)

Far-field fluid velocity (m/s)

\(x\)

Axis in Cartesian coordinate system (m)

\(x_{\text{N}}\)

Nozzle x-coordinate position in the Cartesian coordinate system (m)

\(y\)

Axis in Cartesian coordinate system (m)

\(y_{\text{N}}\)

Nozzle y-coordinate position in the Cartesian coordinate system (m)

\(z\)

Axis in Cartesian coordinate system (m)

\(z_{\text{adj}}\)

Adjusted z-coordinate (m)

Greek letters

\(\alpha_{\text{m}}\)

Solid material thermal diffusivity

\(\mu_{\text{f}}\)

Fluid dynamic viscosity \(( {\text{kg}}/({\text{m}}\,{\text{s}}))\)

\(\mu_{{{\text{m}}x}}\)

Mass flow distribution x-direction mean (m)

\(\mu_{{{\text{m}}y}}\)

Mass flow distribution y-direction mean

\(\nabla\)

Vector differential operator

\(\phi\)

Temperature difference (°K)

\(\phi_{\text{avg}}\)

Average temperature difference (°K)

\(\rho_{\text{f}}\)

Fluid density \(( {\text{kg/m}}^{3} )\)

\(\rho_{\text{m}}\)

Solid material density \(( {\text{kg/m}}^{3} )\)

\(\sigma_{{{\text{m}}x}}\)

Mass flow distribution x-direction standard deviation (m)

\(\sigma_{{{\text{m}}y}}\)

Mass flow distribution y-direction standard deviation (m)

\(\theta\)

Non-dimensional temperature

\(\theta_{\text{aw}}\)

Non-dimensional adiabatic wall temperature

\(\zeta\)

Non-dimensional radial distance from nozzle axis

Subscripts

\(i\)

x-axis index notation

\(j\)

y-axis index notation

\(k\)

z-axis index notation

\({\text{m}}\)

Melting

\({\text{N}}\)

Nozzle

Superscripts

\(t\)

Time index notation

Abbreviations

CFD

Computational fluid dynamics

FEA

Finite element analysis

PDF

Probability density function

TE

Thermal energy

Notes

Acknowledgments

This work was sponsored in part by the US Army Research Laboratories under the Grant No. W911NF-15-2-0026. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Government.

References

  1. 1.
    V. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited, Sawston, 2007, p 1-362CrossRefGoogle Scholar
  2. 2.
    A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, 1st ed., Elsevier Ltd., Amsterdam, 2007, p 1-328CrossRefGoogle Scholar
  3. 3.
    J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, Springer, Boston, 2015CrossRefGoogle Scholar
  4. 4.
    H. Assadi, H. Kreye, F. Gartner, and T. Klassen, Cold Spraying: A Materials Perspective, Acta Mater., 2016, 116(1), p 382-407CrossRefGoogle Scholar
  5. 5.
    F.Z. Shaikh, H.D. Blair, R.J. Tabaczynski, and T.Y. Pan, Gas-Dynamic Cold Spraying Lining for Aluminum Engine Block Cylinders, U.S.P.a.T. Office Ed., 2002Google Scholar
  6. 6.
    M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behavior of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2009, 19(1-2), p 89-94CrossRefGoogle Scholar
  7. 7.
    D.Y. Kim, J.J. Park, J.G. Lee, D. Kim, S.J. Tark, S. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S. Chandra, and S.S. Yoon, Cold Spray Deposition of Copper Electrodes on Silicon and Glass Substrates, J. Therm. Spray Technol., 2013, 22(7), p 1092-1102CrossRefGoogle Scholar
  8. 8.
    T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272CrossRefGoogle Scholar
  9. 9.
    M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650CrossRefGoogle Scholar
  10. 10.
    M. Gardon, A. Latorre, M. Torrell, S. Dosta, J. Fernandez, and J.M. Guilemany, Cold Gas Spray Titanium Coatings onto a Biocompatible Polymer, Mater. Lett., 2013, 106, p 97-99CrossRefGoogle Scholar
  11. 11.
    M. Winnicki, A. Malachowska, T. Piwowarczyk, M. Rutkowska-Gorczyca, and A. Ambroziak, The Bond Strength of Al + Al2O3 Cermet Coatings Deposited by Low-Pressure Cold Spraying, Arch. Civ. Mech. Eng., 2016, 16(4), p 743-752CrossRefGoogle Scholar
  12. 12.
    V. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Prev., 2008, 8, p 164-175CrossRefGoogle Scholar
  13. 13.
    M.D. Trexler, R. Carter, W.S. De Rosset, D. Gray, D. Helfritch, and V.K. Champagne, Cold Spray Fabrication of Refractory Materials for Gun Barrel Liner Applications, Mater. Manuf. Process., 2012, 27, p 820-824CrossRefGoogle Scholar
  14. 14.
    C.A. Widener, M.J. Carter, O.C. Ozdemir, R.H. Hrabe, B. Hoiland, T.E. Stamey, V.K. Champagne, and T.J. Eden, Application of High-Pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator, J. Therm. Spray Technol., 2016, 25(1-2), p 193-201CrossRefGoogle Scholar
  15. 15.
    M. Martin, Toolpath and Build-up Strategies for Cold Spray Additive Manufacturing, ASM International, Edmonton, 2016Google Scholar
  16. 16.
    O.C. Ozdemir and C.A. Widener, Better Predictions using 3D CFD to Inform Cold Spray Process Development, North American Cold Spray Conference, Nov 30–Dec 1, 2016 (Edmonton, Alberta, Canada), ASM InternationalGoogle Scholar
  17. 17.
    S. Camilleri, On Demand High Volume 3D Metal Printing, Cold Spray Action Team Meeting, U.S. Army Research Laboratory, 2017Google Scholar
  18. 18.
    A.M. Birt, V.K. Champagne, Jr., R.D. Sisson, Jr., and D. Apelian, Microstructural Analysis of Ti-6Al-4V Powder for Cold Gas Dynamic Spray Applications, Adv. Powder Technol., 2015, 26, p 1335-1347CrossRefGoogle Scholar
  19. 19.
    V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, and G.A. Crawford, Influence of Feedstock Powder and Cold Spray Processing Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V, Surf. Coat. Technol., 2018, 335, p 1-12CrossRefGoogle Scholar
  20. 20.
    A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10(2), p 375-381CrossRefGoogle Scholar
  21. 21.
    D. Helfritch and V. Champagne, A Model Study of Powder Particle Size Effects in Cold Spray Deposition, U.S.A.R. Laboratory Ed., 2008Google Scholar
  22. 22.
    B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200, p 4424-4432CrossRefGoogle Scholar
  23. 23.
    O.C. Ozdemir and C.A. Widener, Influence of Powder Injection Parameters in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(7), p 1411-1422CrossRefGoogle Scholar
  24. 24.
    V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Apects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2002, 12(2), p 265-281CrossRefGoogle Scholar
  25. 25.
    M.C. Meyer, S. Yin, K.A. McDonnell, O. Stier, and R. Lupoi, Feed Rate Effect on Particulate Acceleration in Cold Spray Under Low Stagnation Pressure Conditions, Surf. Coat. Technol., 2016, 304, p 237-245CrossRefGoogle Scholar
  26. 26.
    A.G. McDonald, A.N. Ryabinin, E. Irissou, and J.-G. Legoux, Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, J. Therm. Spray Technol., 2012, 22(2-3), p 391-397CrossRefGoogle Scholar
  27. 27.
    A.N. Ryabinin, E. Irissou, A. McDonald, and J.-G. Legoux, Simulation of Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, Int. J. Therm. Sci., 2012, 56, p 12-18CrossRefGoogle Scholar
  28. 28.
    G. Benenati and R. Lupoi, Development of a Deposition Strategy in Cold Spray for Additive Manufacturing of Residual Stresses, Procedia CIRP, 2016, 55, p 101-108CrossRefGoogle Scholar
  29. 29.
    B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5-6), p 634-642CrossRefGoogle Scholar
  30. 30.
    Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2001, 25(1-2), p 170-182CrossRefGoogle Scholar
  31. 31.
    O.C. Ozdemir, C.A. Widener, M.J. Carter, and K.W. Johnson, Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings, J. Therm. Spray Technol., 2017, 26(7), p 1598-1615CrossRefGoogle Scholar
  32. 32.
    K. Taylor, B. Jodoin, and J. Karov, Particle Loading Effect in Cold Spray, J. Therm. Spray Technol., 2005, 15(2), p 273-279CrossRefGoogle Scholar
  33. 33.
    O.C. Ozdemir, C.A. Widener, D. Helfritch, and F. Delfanian, Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray, J. Therm. Spray Technol., 2016, 25(4), p 660-671CrossRefGoogle Scholar
  34. 34.
    M. Chandra, Y. Wan, A.V. Hariharan, and J.A. Talbott, Making and Connecting Bus Bars on Solar Cells, U.S.P.a.T. Office Ed., 2003Google Scholar
  35. 35.
    M. Masoomi, S.M. Thompson, and N. Shamsaei, Laser Powder Bed Fusion of Ti-6Al-4V parts: Thermal Modeling and Mechanical Implications, Int. J. Mach. Tools Manuf., 2017, 118-119, p 73-90CrossRefGoogle Scholar
  36. 36.
    M.F. Zah and S. Lutzmann, Modelling and Simulation of Electron Beam Melting, Prod. Eng. Res. Dev., 2010, 4, p 15-23CrossRefGoogle Scholar
  37. 37.
    S. Shrestha and K. Chou, A Build Surface Study of Powder-Bed Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and White-Light Interferometry, Int. J. Mach. Tools Manuf., 2017, 121, p 27-49CrossRefGoogle Scholar
  38. 38.
    M. Elhoriny, M. Wenzelburger, A. Killinger, and R. Gadow, Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings, J. Therm. Spray Technol., 2017, 26, p 735-744CrossRefGoogle Scholar
  39. 39.
    H. Martin, Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces, Adv. Heat Transf., 1977, 13, p 1-60CrossRefGoogle Scholar
  40. 40.
    M. Modak, K. Garg, and S.K. Sahu, Stagnation Region Heat Transfer of Axisymmetric Impinging Jets on Solid Surfaces, Chem. Eng. Technol., 2015, 38(12), p 2127-2136CrossRefGoogle Scholar
  41. 41.
    Q. Chen, A. Alizadeh, W. Xie, X. Wang, V.J. Champagne, A. Gouldstone, J.-H. Lee, and S. Muftu, High-Strain-Rate Material Behavior and Adiabatic Material Instability in Impact of Micron Scale Al-6061 Particles, J. Therm. Spray Technol., 2018, 27, p 641-653CrossRefGoogle Scholar
  42. 42.
    H. Schlichting, Boundary Layer Theory, 7th ed., McGraw-Hill Book Company Inc, New York, 1987Google Scholar
  43. 43.
    R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2002Google Scholar
  44. 44.
    A. Bejan, Heat Transfer, Wiley, New York, 1993Google Scholar
  45. 45.
    R.J. Goldstein, A.I. Behbahani, and K.K. Heppelmann, Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet, Int. J. Heat Mass Transf., 1986, 29(8), p 1227-1235CrossRefGoogle Scholar
  46. 46.
    J.N.B. Livingood and P. Hrycak, Impingement Heat Transfer from Turbulent Air Jets: A Literature Survey, U.S.N.A.a.S. Administration Ed., U.S. National Aeronautics and Space Administration, 1973Google Scholar
  47. 47.
    N. Zuckerman and N. Lior, Jet Impingement: Physics, Correlations, and Numerical Modeling, Adv. Heat Transf., 2006, 39, p 565-631CrossRefGoogle Scholar
  48. 48.
    Spotlight on Turbulence: STAR-CCM + v11.06, Siemens PLM Software, 2016Google Scholar
  49. 49.
    STAR-CCM + Release Notes v11.06, Siemens PLM Software, 2016Google Scholar
  50. 50.
    J.D.J. Anderson, Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill Inc., New York, 1995Google Scholar
  51. 51.
    F.R. Menter, Review of the Shear Stress Transport Turbulence Model Experience from an Industrial Perspective, Int. J. Comput. Fluid Dyn., 2009, 23(4), p 305-316CrossRefGoogle Scholar
  52. 52.
    J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2007, 202, p 1443-1454CrossRefGoogle Scholar
  53. 53.
    Q. Chen, A. Alizadeh-Dehkharghani, A. Gouldstone, and S. Muftu, High Strain Rate Material Behavior and Thermal Energy Generation in Impact of Micron-Scale Al-6061 Particles, Northeastern University, 2018 (Unpublished)Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ozan C. Ozdemir
    • 1
    Email author
  • Qiyong Chen
    • 1
  • Sinan Muftu
    • 1
  • Victor K. ChampagneJr.
    • 2
  1. 1.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  2. 2.U.S Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations