Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 189–197 | Cite as

Deposition Characteristics of SrZrO3 Thermal Barrier Coating Prepared by Solution Precursor Plasma Spray Process

  • Wen MaEmail author
  • Xiangfeng Meng
  • Xinhui Li
  • Yannan Xue
  • Yu Bai
  • Feng Guo
  • Hongying Dong
Peer Reviewed
  • 49 Downloads

Abstract

The crystallization kinetics of the dried SrZrO3 precursor powders were investigated by DSC measurements. The crystallization activation energy of ZrO2 in the SrZrO3 precursor powders is 54.9 kJ/mol. And the Avrami parameter value is 2.16, indicating a two-dimensional, diffusion-controlled nucleation and growth mechanism of ZrO2 nuclei in the SrZrO3 precursor powders. The SrZrO3 thermal barrier coating (TBC) was prepared by solution precursor plasma spray (SPPS) process. The coating deposition characteristics were investigated by designing different spray models (single-scan spray, multiple-scan spray, and raster-scan spray) with optimized spray parameters. The surface and cross-sectional morphology of the SrZrO3 coatings were characterized by scanning electron microscope (SEM). The experimental results showed that the atomization pressure of liquid feedstock has strong influence on the trajectory of the precursor droplets in the plasma jet. The inter-pass boundary (IPB) microstructure in the SrZrO3 coating is mainly attributed to the secondary melting of the powdery deposits formed in the cold region of the plasma jet. The influence of the raster-scan step size of plasma torch on the SrZrO3 coating microstructure depends on the stay time of plasma torch on the substrate; the small raster-scan step size is favorable for the formation of IPB structure in this work.

Keywords

precursor solution precursor plasma spray SrZrO3 thermal barrier coatings 

Notes

Acknowledgments

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (51462026, 51672136), Science and Technology Major Project of Inner Mongolia Autonomous Region (2018-810), and the Inner Mongolia Natural Science Foundation (No. 2017MS0503).

References

  1. 1.
    D. Zhu and R.A. Miller, Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings, Ceram. Eng. Sci. Proc., 2002, 23, p 457-468CrossRefGoogle Scholar
  2. 2.
    J.A. Krogstad, R.M. Leckie, S. Krämer, J.M. Cairney, D.M. Liplin, C.A. Jhonson, and C.G. Levi, Phase Evolution upon Aging of Air Plasma Sprayed t’-Zirconia Coatings: I-Microstructure Evolution, J. Am. Ceram. Soc., 2013, 96(1), p 299-307CrossRefGoogle Scholar
  3. 3.
    D.R. Clarke and S.R. Philpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29CrossRefGoogle Scholar
  4. 4.
    X. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-sprayed Coating, J. Am. Ceram. Soc., 2001, 84(9), p 2086-2090CrossRefGoogle Scholar
  5. 5.
    N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. Garcia, P. Miranzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray, Acta Mater., 2001, 49(12), p 2251-2257CrossRefGoogle Scholar
  6. 6.
    M. Gell, L. Xie, X. Ma, E.H. Jordan, and N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177-178, p 97-102CrossRefGoogle Scholar
  7. 7.
    E.H. Jordan, L. Xie, X. Ma, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65CrossRefGoogle Scholar
  8. 8.
    S. Govindarajan, R.O. Dusane, S.V. Joshi, and K. Faber, In Situ Particle Generation and Splat Formation During Solution Precursor Plasma Spraying of Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2011, 94(12), p 4191-4199CrossRefGoogle Scholar
  9. 9.
    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859CrossRefGoogle Scholar
  10. 10.
    L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, and M. Gell, Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183(1), p 51-61CrossRefGoogle Scholar
  11. 11.
    X. Li, W. Ma, J. Wen, Y. Bai, L. Sun, B. Chen, H. Dong, and Y. Shuang, Preparation of SrZrO3 Thermal Barrier Coating by Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2017, 26(3), p 371-377CrossRefGoogle Scholar
  12. 12.
    S.W. Yung, P.Y. Shih, and T.S. Chin, Crystallization Kinetics of a Low Melting PbO-ZnO-P2O5 glass, Mater. Chem. Phys., 1998, 57(2), p 111-116CrossRefGoogle Scholar
  13. 13.
    G.M. Anilkumar and Y.M. Sung, Phase Formation Kinetics of Nanoparticle-Seeded Strontium Bismuth Tantalate Powder, J. Mater. Sci., 2003, 38(7), p 1391-1396CrossRefGoogle Scholar
  14. 14.
    D. Chen, E. Jordan, and M. Gell, Thermal and Crystallization Behavior of Zirconia Precursor Used in the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2007, 42(14), p 5576-5580CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Wen Ma
    • 1
    • 2
    Email author
  • Xiangfeng Meng
    • 1
    • 2
  • Xinhui Li
    • 1
    • 2
  • Yannan Xue
    • 1
    • 2
  • Yu Bai
    • 1
    • 2
  • Feng Guo
    • 1
    • 2
  • Hongying Dong
    • 3
  1. 1.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina
  2. 2.Inner Mongolia Key Laboratory of Thin Film and Coatings TechnologyHohhotChina
  3. 3.School of Chemical EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations