Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 255–264 | Cite as

VLPPS: An Emerging Process to Create Well-Defined Components by Additive Manufacturing

  • Geoffrey DarutEmail author
  • Aymeric Niederhauser
  • Bertrand Jaccoud
  • Martin Sigrist
  • Elmar Mock
  • Marie Pierre Planche
  • Hanlin Liao
  • Ghislain Montavon
Peer Reviewed
  • 67 Downloads

Abstract

Plasma spraying in controlled atmosphere as very-low-pressure plasma spraying (VLPPS) allows to work with different states of matter, particularly vapor. As a result, the coating microstructure is unique (lower-scale elements, pore architecture) and the properties are improved. Another benefit of VLPPS process is the mold filling. Unlike other thermal spray processes, the vapor mode can follow the gas flow and reach the mold walls to fill. The vapor mode deposition is very soft and protects the surface state of the mold/substrate. The coating microstructure is homogeneous on all the geometry. The choice of a soluble salt mold permits to easily get back the coating and use it as a functional part. The objective is to demonstrate that VLPPS process can be used as an additive manufacturing device to create well-defined objects/pieces.

Keywords

aluminum feedstock low-pressure plasma spray (LPPS) processing vacuum plasma spray 

Notes

Acknowledgments

The authors gratefully acknowledge Creaholic Company which supported the project.

References

  1. 1.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J. Oberste Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A. Ansar Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440CrossRefGoogle Scholar
  2. 2.
    F.L. Toma, A. Potthoff, L.M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152CrossRefGoogle Scholar
  3. 3.
    G. Mauer, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Novel Opportunities for Thermal Spray by PS-PVD, Surf. Coat. Technol., 2015, 268, p 52-57CrossRefGoogle Scholar
  4. 4.
    S. Rezanka, G. Mauer, and R. Vaßen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2014, 23(1-2), p 182-189CrossRefGoogle Scholar
  5. 5.
    M. Gindrat, J.-L. Dorier, C. Hollenstein, A. Refke, and G. Barbezat, Characterization of Supersonic Low Pressure Plasma Jets with Electrostatic Probes, Plasma Sources Sci. Technol., 2004, 13(3), p 484-500CrossRefGoogle Scholar
  6. 6.
    J.-L. Dorier, M. Gindrat, C. Hollenstein, M. Refke, A. Salito, and G. Barbezat, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, Thermal Spray 2001: New Surfaces for A New Millennium, C.C. Berndt, K.A. Khor and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore, Singapore), ASM International, 2001Google Scholar
  7. 7.
    K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD, J. Therm. Spray Technol., 2010, 19(1-2), p 502-509CrossRefGoogle Scholar
  8. 8.
    A. Barth, M. Gindrat, and S. Usai, High Productivity PS-PVD Process, Thermal Spray 2013: Innovative Coating Solutions for the Global Economy, R.S. Lima, A. Agarwal, M.M. Hyland, Y.-C. Lau, G. Mauer, A. McDonald, F.-L. Toma, Ed., May 13-15, 2013 (Busan, South Korea), ASM International, 2013Google Scholar
  9. 9.
    P. Fauchais, J.V.R. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, NewYork, 2014, p 24CrossRefGoogle Scholar
  10. 10.
    F.W. Baumann and D. Roller, Additive Manufacturing, Cloud-Based 3D Printing and Associated Services—Overview, J. Manuf. Mater. Process, 2017, 15(1), p 1-15Google Scholar
  11. 11.
    W.E. Frazier, Metal Additive Manufacturing, Rev. J. Mater. Eng. Perform., 2014, 23(6), p 1917-1928CrossRefGoogle Scholar
  12. 12.
    I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer, New York, 2015CrossRefGoogle Scholar
  13. 13.
    E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401-477CrossRefGoogle Scholar
  14. 14.
    R.N. Raoelison, C. Verdy, and H. Liao, Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications, Mater. Des., 2017, 133, p 266-287CrossRefGoogle Scholar
  15. 15.
    A. Astarita, F. Coticelli, and U. Prisco, Repairing of an Engine Block Through the Cold Gas Dynamic Spray Technology, Mater. Res., 2016, 19(6), p 1226-1231CrossRefGoogle Scholar
  16. 16.
    A. Villafuerte, Modern Cold Spray: Materials, Process and Applications, Springer, New York, 2015, p 341-358CrossRefGoogle Scholar
  17. 17.
    E. Bannier, G. Darut, E. Sánchez, A. Denoirjean, M.C. Bordes, M.D. Salvador, E. Rayón, and H. Ageorges, Microstructure and Photocatalytic Activity of Suspension Plasma Sprayed TiO2 Coatings on Steel and Glass Substrates, Surf. Coat. Technol., 2011, 206(2-3), p 378-386CrossRefGoogle Scholar
  18. 18.
    S. Guanhong, H. Xiaodong, J. Jiuxing, and S. Yue, Parametric Study of Al and Al2O3 Ceramic Coatings Deposited by Air Plasma Spray onto Polymer Substrate, Appl. Surf. Sci., 2011, 257(17), p 7864-7870CrossRefGoogle Scholar
  19. 19.
    K.J. Klabunde, Thin Films From Free Atoms and Particles, Academic Press Inc, Orlando, 2012, p 8Google Scholar
  20. 20.
    G. Reisel and R.B. Heimann, Correlation Between Surface Roughness of Plasma-Sprayed Chromium Oxide Coatings and Powder Grain Size Distribution: A Fractal Approach, Surf. Coat. Technol., 2004, 185(2-3), p 215-221CrossRefGoogle Scholar
  21. 21.
    Y. Wang, G. Darut, T. Poirier, J. Stella, H. Liao, and MP. Planche, Ultrasonic Cavitation Erosion of Vacuum Plasma sprayed Yttria Stabilized Zirconia Coatings, 8th RIPT2017, December 6-8, 2017 (Limoges, France)Google Scholar
  22. 22.
    J. Ilavsky, A.J. Allen, G.G. Long, S. Krueger, C.C. Berndt, and H. Herman, Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits, J. Am. Ceram. Soc., 1997, 80(3), p 733-742CrossRefGoogle Scholar
  23. 23.
    S.H. Leigh and C.C. Berndt, Evaluation of Off-Angle Thermal Spray, Surf. Coat. Technol., 1997, 89(3), p 213-224CrossRefGoogle Scholar
  24. 24.
    P. Fauchais, A. Vardelle, M. Vardelle, and M. Fukumoto, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Geoffrey Darut
    • 1
    Email author
  • Aymeric Niederhauser
    • 2
  • Bertrand Jaccoud
    • 2
  • Martin Sigrist
    • 2
  • Elmar Mock
    • 2
  • Marie Pierre Planche
    • 1
  • Hanlin Liao
    • 1
  • Ghislain Montavon
    • 1
  1. 1.UBFC, ICB-PMDM-LERMPS UMR6303BelfortFrance
  2. 2.CREAHOLIC SABiel 7Switzerland

Personalised recommendations