Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 87–97 | Cite as

Fatigue Crack Growth in Plasma-Sprayed Refractory Materials

  • Ondrej KovarikEmail author
  • Ales Materna
  • Jan Siegl
  • Jan Cizek
  • Jakub Klecka
Peer Reviewed
  • 80 Downloads

Abstract

Fatigue crack growth in self-standing plasma-sprayed tungsten and molybdenum beams with artificially introduced notches subjected to pure bending was studied. Fatigue crack length was measured using the differential compliance method, and fatigue crack growth rate was established as a function of stress intensity factor. Crack opening under compressive stress was detected. Fractographic analysis revealed the respective crack formation mechanisms. At low crack propagation rates, the fatigue crack growth takes place by intergranular splat fracture accompanied by splat decohesion in Mo coating, eventually by void interconnection in W coating. Frequently, the crack deflected from the notch plane being attracted to stress concentrators formed by voids or favorably oriented splat interfaces. At higher values of the stress intensity factor, the intergranular cracking of splats becomes more common and the crack propagated more perpendicularly to the specimen surface.

Keywords

fatigue crack growth rate molybdenum RF induction plasma tungsten 

Notes

Acknowledgments

This study was supported by the Czech Science Foundation Grant Project GAČR 14-36566G.

References

  1. 1.
    J.G. La Barbera-Sosa, Y.Y. Santana, C. Villalobos-Gutiérrez, S. Cabello-Sequera, M.H. Staia, and E.S. Puchi-Cabrera, Effect of Spray Distance on the Corrosion-Fatigue Behavior of a Medium-Carbon Steel Coated with a Colmonoy 88 Alloy Deposited by HVOF Thermal Spray, Surf. Coat. Technol., 2010, 205(4), p 1137-1144. https://doi.org/10.1016/j.surfcoat.2010.01.038 CrossRefGoogle Scholar
  2. 2.
    A. Vackel and S. Sampath, Fatigue Behavior of Thermal Sprayed WC-CoCr-Steel Systems: Role of Process and Deposition Parameters, Surf. Coat. Technol., 2017, 315, p 408-416. https://doi.org/10.1016/j.surfcoat.2017.02.062 CrossRefGoogle Scholar
  3. 3.
    O. Kovářík, J. Siegl, J. Nohava, and P. Chráska, Young’s Modulus and Fatigue Behavior of Plasma-Sprayed Alumina Coatings, J. Therm. Spray Technol., 2005, 14(2), p 231-238. https://doi.org/10.1361/105996304523809 CrossRefGoogle Scholar
  4. 4.
    O. Kovářík, J. Siegl, and Z. Procházka, Fatigue Behavior of Bodies with Thermally Sprayed Metallic and Ceramic Deposits, J. Therm. Spray Technol., 2008, 17(4), p 525-532. https://doi.org/10.1007/s11666-008-9205-1 CrossRefGoogle Scholar
  5. 5.
    R. Musalek, O. Kovarik, L. Tomek, J. Medricky, Z. Pala, P. Hausild, J. Capek, K. Kolarik, N. Curry, and S. Bjorklund, Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending, J. Therm. Spray Technol., 2016, 25(1-2), p 231-243. https://doi.org/10.1007/s11666-015-0321-4 CrossRefGoogle Scholar
  6. 6.
    J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, and I. Dlouhy, Influence of Plasma and Cold Spray Deposited Ti Layers on High-Cycle Fatigue Properties of Ti6Al4V Substrates, Surf. Coat. Technol., 2013, 217, p 23-33. https://doi.org/10.1016/j.surfcoat.2012.11.067 CrossRefGoogle Scholar
  7. 7.
    O. Kovářík, P. Haušild, J. Medřický, L. Tomek, J. Siegl, R. Mušálek, N. Curry, and S. Björklund, Fatigue Crack Growth in Bodies with Thermally Sprayed Coating, J. Therm. Spray Technol., 2016, 25(1-2), p 311-320. https://doi.org/10.1007/s11666-015-0329-9 CrossRefGoogle Scholar
  8. 8.
    O. Kovářík, P. Haušild, J. Siegl, Z. Pala, J. Matějíček, and V. Davydov, The Influence of Plasma Sprayed Multilayers of Cr2O3 and Ni10wt%Al on Fatigue Resistance, Surf. Coat. Technol., 2014, 251, p 143-150. https://doi.org/10.1016/j.surfcoat.2014.04.018 CrossRefGoogle Scholar
  9. 9.
    F. Kroupa and J. Plesek, Nonlinear Elastic Behavior in Compression of Thermally Sprayed Materials, Mater. Sci. Eng. A, 2002, 328(1-2), p 1-7. https://doi.org/10.1016/S0921-5093(01)01653-7 CrossRefGoogle Scholar
  10. 10.
    R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1-2), p 422-428. https://doi.org/10.1007/s11666-009-9362-x CrossRefGoogle Scholar
  11. 11.
    P. Cavaliere, A. Silvello, N. Cinca, H. Canales, S. Dosta, I. Garcia Cano, and J.M. Guilemany, Microstructural and Fatigue Behavior of Cold Sprayed Ni-Based Superalloys Coatings, Surf. Coat. Technol., 2017, 324, p 390-402. https://doi.org/10.1016/j.surfcoat.2017.06.006 CrossRefGoogle Scholar
  12. 12.
    P. Cavaliere, A. Perrone, and A. Silvello, Fatigue Behaviour of Inconel 625 Cold Spray Coatings, Surf. Eng., 2018, 34(5), p 380-391. https://doi.org/10.1080/02670844.2017.1371872 CrossRefGoogle Scholar
  13. 13.
    O. Kovářík, P. Haušild, J. Čapek, J. Medřický, J. Siegl, R. Mušálek, Z. Pala, N. Curry, and S. Björklund, Resonance Bending Fatigue Testing with Simultaneous Damping Measurement and Its Application on Layered Coatings, Int. J. Fatigue, 2016, 82, p 300-309. https://doi.org/10.1016/j.ijfatigue.2015.07.026 CrossRefGoogle Scholar
  14. 14.
    C. Benz, Fatigue Crack Growth at Negative Stress Ratios: On the Uncertainty of Using Δ K and R to Define the Cyclic Crack Tip Load, Eng. Fract. Mech., 2018, 189, p 194-203. https://doi.org/10.1016/j.engfracmech.2017.11.001 CrossRefGoogle Scholar
  15. 15.
    J. Zhang, X.D. He, B. Suo, and S.Y. Du, Elastic–plastic Finite Element Analysis of the Effect of Compressive Loading on Crack Tip Parameters and Its Impact on Fatigue Crack Propagation Rate, Eng. Fract. Mech., 2008, 75(18), p 5217-5228. https://doi.org/10.1016/j.engfracmech.2008.08.006 CrossRefGoogle Scholar
  16. 16.
    M. Yu, T. Topper, D. Duquesnay, and M. Levin, The Effect of Compressive Peak Stress on Fatigue Behaviour, Int. J. Fatigue, 1986, 8(1), p 9-15. https://doi.org/10.1016/0142-1123(86)90041-1 CrossRefGoogle Scholar
  17. 17.
    C. Benz and M. Sander, Reconsiderations of Fatigue Crack Growth at Negative Stress Ratios: Finite Element Analyses, Eng. Fract. Mech., 2015, 145, p 98-114. https://doi.org/10.1016/j.engfracmech.2015.07.022 CrossRefGoogle Scholar
  18. 18.
    T.G. Chondros, A.D. Dimarogonas, and J. Yao, A Continuous Cracked Beam Vibration Theory, J. Sound Vib., 1998, 215(1), p 17-34. https://doi.org/10.1006/jsvi.1998.1640 CrossRefGoogle Scholar
  19. 19.
    V.P. Golub, V.P. Butseroga, and A.D. Pogrebnyak, Study of the Kinetics of Fatigue Cracks by the Method of Differential Compliance, Int. Appl. Mech., 1995, 31(12), p 1018-1025. https://doi.org/10.1007/BF00847262 CrossRefGoogle Scholar
  20. 20.
    O. Kovarik, A. Janca, and J. Siegl, Fatigue Crack Growth Rate in Miniature Specimens Using Resonance, Int. J. Fatigue, 2017, 102, p 252-260. https://doi.org/10.1016/j.ijfatigue.2017.02.015 CrossRefGoogle Scholar
  21. 21.
    O. Kovářík, P. Haušild, J. Siegl, T. Chráska, J. Matějíček, Z. Pala, and M. Boulos, The Influence of Substrate Temperature on Properties of APS and VPS W Coatings, Surf. Coat. Technol., 2015, 268, p 7-14. https://doi.org/10.1016/j.surfcoat.2014.07.041 CrossRefGoogle Scholar
  22. 22.
    K. Geels, “Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing,” (West Conshohocken, PA), ASTM International, 2007, https://doi.org/10.1520/mnl46-eb
  23. 23.
    M. Tenenbaum and H. Pollard, Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences, Dover Publications, New York, 1985Google Scholar
  24. 24.
    J. Cizek, T. Chraska, O. Kovarik, J. Siegl, and J. Kondas, “Fatigue Crack Propagation in Cold Sprayed Metallic Coatings,” ITSC 2018—Proceedings of the International Thermal Spray Conference, F. Azarmi, K. Balani, T. Eden, T. Hussain, Y.-C. Lau, H. Li, K. Shinoda, F.-L. Toma, and J. Veilleux, Eds., (Orlando, FL, USA), ASM International, 2018Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ondrej Kovarik
    • 1
    Email author
  • Ales Materna
    • 1
  • Jan Siegl
    • 1
  • Jan Cizek
    • 2
  • Jakub Klecka
    • 1
    • 2
  1. 1.Department of Materials, Faculty of Nuclear Science and Physical EngineeringCzech Technical UniversityPragueCzech Republic
  2. 2.Institute of Plasma Physics, Czech Academy of SciencesPragueCzech Republic

Personalised recommendations