Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 283–290 | Cite as

Corrosion and Algal Adhesion Behaviors of HVOF-Sprayed Fe-Based Amorphous Coatings for Marine Applications

  • Haijun Zhang
  • Yongfeng Gong
  • Botao Zhang
  • Xiuyong ChenEmail author
  • Lijia Fang
  • Peipeng JinEmail author
  • Hua LiEmail author
Peer Reviewed
  • 103 Downloads

Abstract

In this study, Fe-based amorphous/nanocrystalline coatings consisting of Fe53Cr19Zr7Mo2C18Si were fabricated by high-velocity oxy-fuel spray. For comparative study, further crystallization annealing treatment at 750 °C was carried out for the coatings. The microstructure, corrosion resistance and algal adhesion behaviors of the as-sprayed and annealed coatings were systematically investigated by scanning electron microscopy, x-ray diffraction, transmission electron microscopy, electrochemical testing and laser confocal scanning microscopy, respectively. Results show that the as-sprayed coatings exhibited excellent corrosion resistance and decreased algal adhesion, while the annealed coatings displayed compromised anti-corrosion performances, but significantly inhibited the adhesion of typical algae Phaeodactylum tricornutum.

Keywords

algal adhesion corrosion resistance Fe-based amorphous coating high-velocity oxy-fuel marine coatings nanocrystalline 

Notes

Acknowledgments

This work was supported by CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (Grant # 174433KYSB20160085), National Natural Science Foundation of China (Grant # 41706076), Qinghai Provincial Innovation Platform Program (No. 2017-ZJ-Y17) and Key Research and Development Program of Zhejiang Province (Grant # 2017C01003).

References

  1. 1.
    M. Lejars, A. Margaillan, and C. Bressy, Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings, Chem. Rev., 2012, 112(8), p 4347-4390CrossRefGoogle Scholar
  2. 2.
    C.G. Soares, Y. Garbatov, A. Zayed, and G. Wang, Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere, Corros. Sci., 2009, 51(9), p 2014-2026CrossRefGoogle Scholar
  3. 3.
    W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo, and Y. Qin, Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview, J. Therm. Spray Technol., 2014, 23(7), p 1157-1180CrossRefGoogle Scholar
  4. 4.
    L. Shan, Y.R. Zhang, Y.X. Wang, J.L. Li, X. Jiang, and J.M. Chen, Corrosion and Wear Behaviors of PVD CrN and CrSiN Coatings in Seawater, T. Nonferr. Metal. Soc., 2016, 26(1), p 175-184CrossRefGoogle Scholar
  5. 5.
    A. Venault, Y. Chang, H.H. Hsu, J.F. Jhong, H.S. Yang, T.C. Wei, K.L. Tung, A. Higuchi, and J. Huang, Biofouling-Resistance Control of Expanded Poly(tetrafluoroethylene) Membrane via Atmospheric Plasma-Induced Surface PEGylation, J. Membr. Sci., 2013, 439, p 48-57CrossRefGoogle Scholar
  6. 6.
    R. Dineshram, R. Subasri, K.R. Somaraju, K. Jayaraj, L. Vedaprakash, K. Ratnam, S.V. Joshi, and R. Venkatesan, Biofouling Studies on Nanoparticle-Based Metal Oxide Coatings on Glass Coupons Exposed to Marine Environment, Colloid. Surface B, 2009, 74(1), p 75-83CrossRefGoogle Scholar
  7. 7.
    S.M. Olsen, L.T. Pedersen, M.H. Laursen, S. Kiil, and K. Dam-Johansen, Enzyme-Based Antifouling Coatings: A Review, Biofouling, 2007, 23(5-6), p 369-383CrossRefGoogle Scholar
  8. 8.
    A. Daniel, C. Le Pen, C. Archambeau, and F. Reniers, Use of a PECVD-PVD Process for the Deposition of Copper Containing Organosilicon Thin Films on Steel, Appl. Surf. Sci., 2009, 256(3), p 82-85CrossRefGoogle Scholar
  9. 9.
    X. Chen, X. He, X. Suo, J. Huang, Y. Gong, Y. Liu, and H. Li, Effect of Surface Topological Structure and Chemical Modification of Flame Sprayed Aluminum Coatings on the Colonization of Cylindrotheca Closterium on Their Surfaces, Appl. Surf. Sci., 2016, 388, p 385-391CrossRefGoogle Scholar
  10. 10.
    Z. Jia, Y. Liu, Y. Wang, Y. Gong, P. Jin, X. Suo, and H. Li, Flame Spray Fabrication of Polyethylene-Cu Composite Coatings with Enwrapped Structures: A New Route for Constructing Antifouling Layers, Surf. Coat. Technol., 2017, 309, p 872-879CrossRefGoogle Scholar
  11. 11.
    D. Li, X. Chen, X. Hui, J. Wang, P. Jin, and H. Li, Effect of Amorphicity of HVOF Sprayed Fe-Based Coatings on Their Corrosion Performances and Contacting Osteoblast Behavior, Surf. Coat. Technol., 2017, 310, p 207-213CrossRefGoogle Scholar
  12. 12.
    H.R. Ma, X.Y. Chen, J.W. Li, C.T. Chang, G. Wang, H. Li, X.M. Wang, and R.W. Li, Fe-Based Amorphous Coating with High Corrosion and Wear Resistance, Surf. Eng., 2016, 33(1), p 56-62CrossRefGoogle Scholar
  13. 13.
    R.J.K. Wood and A.J. Speyer, Erosion-Corrosion of Candidate HVOF Aluminum-Based Marine Coatings, Wear, 2004, 256(5), p 545-556CrossRefGoogle Scholar
  14. 14.
    X. Chen, Y. Gong, X. Suo, J. Huang, Y. Liu, and H. Li, Construction of Mechanically Durable Superhydrophobic Surfaces by Thermal Spray Deposition and Further Surface Modification, Appl. Surf. Sci., 2015, 356, p 639-644CrossRefGoogle Scholar
  15. 15.
    A. Kobayashi, S. Yano, H. Kimura, and A. Inoue, Fe-Based Metallic Glass Coatings Produced by Smart Plasma Spraying Process, Mater. Sci. Eng. B, 2008, 148(1-3), p 110-113CrossRefGoogle Scholar
  16. 16.
    J.H. Kim and M.H. Lee, A Study on Cavitation Erosion and Corrosion Behavior of Al-, Zn-, Cu-, and Fe-Based Coatings Prepared by Arc Spraying, J. Therm. Spray Technol., 2010, 19(6), p 1224-1230CrossRefGoogle Scholar
  17. 17.
    J. Kwon, H. Park, I. Lee, and C. Lee, Effect of Gas Flow Rate on Deposition Behavior of Fe-Based Amorphous Alloys in Vacuum Kinetic Spray Process, Surf. Coat. Technol., 2014, 259, p 585-593CrossRefGoogle Scholar
  18. 18.
    B. Movahedi, M.H. Enayati, and C.C. Wong, Structural and Thermal Behavior of Fe-Cr-Mo-P-B-C-Si Amorphous and Nanocrystalline HVOF Coatings, J. Therm. Spray Technol., 2010, 19(5), p 1093-1099CrossRefGoogle Scholar
  19. 19.
    J. Kawakita, T. Fukushima, S. Kuroda, and T. Kodama, Corrosion Behaviour of HVOF Sprayed SUS316L Stainless Steel in Seawater, Corros. Sci., 2002, 44, p 2561-2581CrossRefGoogle Scholar
  20. 20.
    M.M. Verdian, K. Raeissi, and M. Salehi, Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution, Corros. Sci., 2010, 52(3), p 1052-1059CrossRefGoogle Scholar
  21. 21.
    J. Farmer, J.S. Choi, C. Saw, J. Haslam, D. Day, P. Hailey, T. Lian, R. Rebak, J. Perepezko, J. Payer, D. Branagan, B. Beardsley, A. D’amato, and L. Aprigliano, Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development, Metall. Mater. Trans. A, 2009, 40(6), p 1289-1305CrossRefGoogle Scholar
  22. 22.
    A. Inoue and A. Takeuchi, Recent Development and Application Products of Bulk Glassy Alloys, Acta Mater., 2011, 59(6), p 2243-2267CrossRefGoogle Scholar
  23. 23.
    C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, and L. Liu, Influence of the Size of Spraying Powders on the Microstructure and Corrosion Resistance of Fe-Based Amorphous Coating, Electrochim. Acta, 2011, 56(18), p 6380-6388CrossRefGoogle Scholar
  24. 24.
    N. Mahata, A. Banerjee, P. Bijalwan, P.K. Rai, S. Sangal, and K. Mondal, Electrochemical Behavior of HVOF-Sprayed Amorphous and Nanocrystalline Fe-Based Fe73.13Si11.12B10.79Cr2.24C2.72 Composite Coatings, J. Mater. Eng. Perform., 2017, 26(11), p 5538-5552CrossRefGoogle Scholar
  25. 25.
    J. Landoulsi, K.E. Cooksey, and V. Dupres, Review-Interactions Between Diatoms and Stainless Steel: Focus on Biofouling and Biocorrosion, Biofouling, 2011, 27(10), p 1109-1124CrossRefGoogle Scholar
  26. 26.
    X. He, Y. Liu, Y. Gong, C. Zhou, and H. Li, Autoclaving-Induced In-Situ Grown Alumina on Arc-Sprayed Aluminum Coatings: Multiscaled Topography Facilitates Antifouling Performances, Surf. Coat. Technol., 2017, 309, p 295-300CrossRefGoogle Scholar
  27. 27.
    R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Study of Structure and Corrosion Resistance of Fe-Based Amorphous Coatings Prepared by HVAF and HVOF, Corros. Sci., 2011, 53(7), p 2351-2356CrossRefGoogle Scholar
  28. 28.
    S. Wang, Y. Li, X. Wang, S. Yamaura, and W. Zhang, Glass-Forming Ability, Thermal Properties, and Corrosion Resistance of Fe-Based (Fe, Ni, Mo, Cr)-P-C-B Metallic Glasses, J. Non Cryst. Solids, 2017, 476, p 75-80CrossRefGoogle Scholar
  29. 29.
    L. Qiao, Y. Wu, S. Hong, Y. Qin, W. Shi, and G. Li, Corrosion Behavior of HVOF-Sprayed Fe-Based Alloy Coating in Various Solutions, J. Mater. Eng. Perform., 2017, 26(8), p 3813-3820CrossRefGoogle Scholar
  30. 30.
    R. Li, Z. Li, Y. Zhu, and K. Qi, Structure and Corrosion Resistance Properties of Ni-Fe-B-Si-Nb Amorphous Composite Coatings Fabricated by Laser Processing, J. Alloys Compd., 2013, 580, p 327-331CrossRefGoogle Scholar
  31. 31.
    Y. Yang, C. Zhang, Y. Peng, Y. Yu, and L. Liu, Effects of Crystallization on the Corrosion Resistance of Fe-Based Amorphous Coatings, Corros. Sci., 2012, 59, p p10-p19CrossRefGoogle Scholar
  32. 32.
    J. Kawakita and S. Kuroda, Oscillational Corrosion Potential of HastelloyC Coatings Fabricated by GS-HVOF Spraying, Corros. Sci., 2005, 47(8), p 2053-2062CrossRefGoogle Scholar
  33. 33.
    K. Danadevi, R. Rozati, B. Saleha Banu, P. Hanumanth Rao, and P. Grover, DNA Damage in Workers Exposed to Lead Using Comet Assay, Toxicology, 2003, 187(2-3), p 183-193CrossRefGoogle Scholar
  34. 34.
    S. Wiumandersen, Effect of Chromium on Photosynthesis and Growth of Diatoms and Green-Algae, Physiol. Plant., 1974, 32(4), p 308-310CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and FormingQinghai UniversityXiningPeople’s Republic of China
  2. 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  3. 3.Cixi Institute of Biomedical Engineering, Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China

Personalised recommendations