Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 8, pp 1333–1343 | Cite as

Silver-Doped Hydroxyapatite Coatings Deposited by Suspension Plasma Spraying

  • J. Cizek
  • V. Brozek
  • T. Chraska
  • F. Lukac
  • J. Medricky
  • R. Musalek
  • T. Tesar
  • F. Siska
  • Z. Antos
  • J. Cupera
  • M. Matejkova
  • Z. Spotz
  • S. Houdkova
  • M. Kverka
Peer Reviewed
  • 68 Downloads

Abstract

Pure hydroxyapatite suspension was produced by wet chemical synthesis. Using a hybrid water-stabilized torch, a series of HA coatings were produced on SS304 and Ti6Al4V substrates and their properties were characterized by SEM, EDX and XRD techniques. After deposition, the amorphous phase content reached 6-10% and the coatings retained 75-82% of crystalline HA phase. Their thickness reached 145 μm. To understand the wear behavior of the coatings, pin-on-disc tribology evaluation was performed. Additionally, a set of HA coatings was prepared with pure metallic Ag content. This formed by in situ chemical decomposition of AgNO3 added into the HA suspension. The Ag was dispersed evenly within the coatings in the form of submicron-sized particles situated predominantly along the HA splats boundaries with a total Ag content of 8 wt.%. Given the antibacterial properties of Ag, such result presents a promising step forward in the hard tissue replacement research.

Keywords

antibacterial property HA hybrid water-stabilized plasma liquid feedstock suspension plasma spraying 

Notes

Acknowledgments

The experimental study was supported through Czech Science Foundation grant GB14-36566G “Multidisciplinary research centre for advanced materials”.

References

  1. 1.
    L.L. Hench, Bioceramics-From Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487-1510CrossRefGoogle Scholar
  2. 2.
    L.L. Hench, Bioceramics, J. Am. Ceram. Soc., 2005, 81(7), p 1705-1728CrossRefGoogle Scholar
  3. 3.
    J. Cizek, K.A. Khor, and Z. Prochazka, Influence of Spraying Conditions on Thermal and Velocity Properties of Plasma Sprayed Hydroxyapatite, Mater. Sci. Eng. C, 2007, 27(2), p 340-344CrossRefGoogle Scholar
  4. 4.
    J. Cizek and K.A. Khor, Role of In-Flight Temperature and Velocity of Powder Particles on Plasma Sprayed Hydroxyapatite Coating Characteristics, Surf. Coat. Technol., 2012, 206(8-9), p 2181-2191CrossRefGoogle Scholar
  5. 5.
    J.L. Xu, D. Joguet, J. Cizek, K.A. Khor, H.L. Liao, C. Coddet, and W.N. Chen, Synthesis and Characterization on Atomphospheric Plasma Sprayed Amorphous Silica Doped Hydrxoyapatite Coatings, Surf. Coat. Technol., 2012, 206(22), p 4659-4665CrossRefGoogle Scholar
  6. 6.
    R.B. Heimann, Materials Science of Crystalline Bioceramics: A Review of Basic Properties and Applications, Chiang Mai Univ. J. Nat. Sci., 2002, 1(1), p 23-45Google Scholar
  7. 7.
    R.B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol., 2016, 25(5), p 827-850CrossRefGoogle Scholar
  8. 8.
    T.J. Levingstone, M. Ardhaoui, K. Benyounis, L. Looney, and J. Stokes, Plasma Sprayed Hydroxyapatite Coatings: Understanding Process Relationships Using Design of Experiment Analysis, Surf. Coat. Technol., 2015, 283, p 29-36CrossRefGoogle Scholar
  9. 9.
    T.J. Levingstone, N. Barron, M. Ardhaoui, K. Benyounis, L. Looney, and J. Stokes, Application of Response Surface Methodology in the Design of Functionally Graded Plasma Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2017, 313, p 307-318CrossRefGoogle Scholar
  10. 10.
    K.A. Gross, C.C. Berndt, and H. Herman, Amorphous Phase Formation in Plasma-Sprayed Hydroxyapatite Coatings, J. Biomed. Mater. Res., 1998, 39(3), p 407-414CrossRefGoogle Scholar
  11. 11.
    M.F. Hasan, J. Wang, and C.C. Berndt, Effect of Power and Stand-Off Distance on Plasma Sprayed Hydroxyapatite Coatings, Mater. Manuf. Process., 2013, 28(12), p 1279-1285CrossRefGoogle Scholar
  12. 12.
    S. Dyshlovenko, L. Pawlowski, P. Roussel, D. Murano, and A. le Maguer, Relationship Between Plasma Spray Operational Parameters and Microstructure of Hydroxyapatite Coatings and Powder Particles Sprayed Into Water, Surf. Coat. Technol., 2006, 200(12-13), p 3845-3855CrossRefGoogle Scholar
  13. 13.
    V. Guipont, M. Espanol, F. Borit, N. Llorca-Isern, M. Jeandin, K.A. Khor, and P. Cheang, High-Pressure Plasma Spraying of Hydroxyapatite Powders, Mater. Sci. Eng. A, 2002, 325(1-2), p 9-18CrossRefGoogle Scholar
  14. 14.
    K.A. Khor, Y.W. Gu, C.H. Quek, and P. Cheang, Plasma Spraying of Functionally Graded Hydroxyapatite/Ti-6Al-4V Coatings, Surf. Coat. Technol., 2003, 168(2-3), p 195-201CrossRefGoogle Scholar
  15. 15.
    K.A. Khor, C.S. Yip, and P. Cheang, Ti-6Al-4V/Hydroxyapatite Composite Coatings Prepared by Thermal Spray Techniques, J. Therm. Spray Technol., 1997, 6(1), p 109-115CrossRefGoogle Scholar
  16. 16.
    R. Ahmed, N.H. Faisal, S.M. Knupfer, A.M. Paradowska, M.E. Fitzpatrick, K.A. Khor, and J. Cizek, Neutron Diffraction Residual Strain Measurements in Plasma Sprayed Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants, Mater. Sci. Forum, 2010, 652, p 309-314CrossRefGoogle Scholar
  17. 17.
    N.W. Khun, Z. Li, K.A. Khor, and J. Cizek. Higher in-Flight Particle Velocities Enhance In Vitro Tribological Behavior of Plasma Sprayed Hydroxyapatite Coatings, Tribol. Int., 2016, 103, p 496-503CrossRefGoogle Scholar
  18. 18.
    P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37(9), p R86-R108CrossRefGoogle Scholar
  19. 19.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829.CrossRefGoogle Scholar
  20. 20.
    F.L. Toma, A. Potthoff, L.M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152.CrossRefGoogle Scholar
  21. 21.
    P. Fauchais, M. Vardelle, S. Goutier, and A. Vardelle, Key Challenges and Opportunities in Suspension and Solution Plasma Spraying, Plasma Chem. Plasma Process., 2014, 35(3), p 511-525CrossRefGoogle Scholar
  22. 22.
    R. Musalek, J. Medricky, T. Tesar, J. Kotlan, Z. Pala, F. Lukac, T. Chraska, and N. Curry, Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology, J. Therm. Spray Technol., 2016, 26(1-2), p 37-46Google Scholar
  23. 23.
    T. Tesar, R. Musalek, J. Medricky, J. Kotlan, F. Lukac, Z. Pala, P. Ctibor, T. Chraska, S. Houdkova, V. Rimal, and N. Curry, Development of Suspension Plasma Sprayed Alumina Coatings With High Enthalpy Plasma Torch, Surf. Coat. Technol., 2017, 325, p 277-288CrossRefGoogle Scholar
  24. 24.
    J. Kotlan, Z. Pala, R. Musalek, and P. Ctibor, On Reactive Suspension Plasma Spraying of Calcium Titanate, Ceram. Int., 2016, 42(3), p 4607-4615CrossRefGoogle Scholar
  25. 25.
    S.S.A. Abidi and Q. Murtaza, Synthesis and Characterization of Nano-Hydroxyapatite Powder Using Wet Chemical Precipitation Reaction, J. Mater. Sci. Technol., 2014, 30(4), p 307-310CrossRefGoogle Scholar
  26. 26.
    R. Jaworski, C. Pierlot, L. Pawlowski, M. Bigan, and M. Quivrin, Synthesis and Preliminary Tests of Suspension Plasma Spraying of Fine Hydroxyapatite Powder, J. Therm. Spray Technol., 2008, 17(5-6), p 679-684CrossRefGoogle Scholar
  27. 27.
    R. Jaworski, L. Pawlowski, C. Pierlot, F. Roudet, S. Kozerski, and F. Petit, Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 240-247CrossRefGoogle Scholar
  28. 28.
    S. Kozerski, L. Pawlowski, R. Jaworski, F. Roudet, and F. Petit, Two Zones Microstructure of Suspension Plasma Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2010, 204(9-10), p 1380-1387CrossRefGoogle Scholar
  29. 29.
    R.T. Candidato, P. Sokolowski, L. Pawlowski, and A. Denoirjean, Preliminary Study of Hydroxyapatite Coatings Synthesis Using Solution Precursor Plasma Spraying, Surf. Coat. Technol., 2015, 277, p 242-250CrossRefGoogle Scholar
  30. 30.
    A. Mejias, R.T. Candidato, L. Pawlowski, and D. Chicot, Mechanical Properties by Instrumented Indentation of Solution Precursor Plasma Sprayed Hydroxyapatite Coatings: Analysis of Microstructural Effect, Surf. Coat. Technol., 2016, 298, p 93-102CrossRefGoogle Scholar
  31. 31.
    A. Cattini, D. Bellucci, A. Sola, L. Pawlowski, and V. Cannillo, Suspension Plasma Spraying of Optimised Functionally Graded Coatings of Bioactive Glass/Hydroxyapatite, Surf. Coat. Technol., 2013, 236, p 118-126CrossRefGoogle Scholar
  32. 32.
    A. Cattini, D. Bellucci, A. Sola, L. Pawlowski, and V. Cannillo, Microstructural Design of Functionally Graded Coatings Composed of Suspension Plasma Sprayed Hydroxyapatite and Bioactive Glass, J. Biomed. Mater. Res. B: Appl. Biomater., 2013, 102(3), p 551-560CrossRefGoogle Scholar
  33. 33.
    Y. Huang, L. Song, X. Liu, Y. Xiao, Y. Wu, J. Chen, F. Wu, and Z. Gu, Hydroxyapatite Coatings Deposited By Liquid Precursor Plasma Spraying: Controlled Dense and Porous Microstructures and Osteoblastic Cell Responses, Biofabrication, 2010, 2(4), p 045003.CrossRefGoogle Scholar
  34. 34.
    S.T. Aruna, S. Kulkarni, M. Chakraborty, S.S. Kumar, N. Balaji, and C. Mandal, A Comparative Study on the Synthesis and Properties of Suspension and Solution Precursor Plasma Sprayed Hydroxyapatite Coatings, Ceram. Int., 2017, 43(13), p 9715-9722CrossRefGoogle Scholar
  35. 35.
    M. Ueno, H. Miyamoto, M. Tsukamoto, S. Eto, I. Noda, T. Shobuike, T. Kobatake, M. Sonohata, and M. Mawatari, Silver-Containing Hydroxyapatite Coating Reduces Biofilm Formation By Methicillin-Resistant Staphylococcus Aureus In Vitro and In Vivo, BioMed. Res. Int., 2016, 2016, p 1-7Google Scholar
  36. 36.
    J.L. Clement and P.S. Jarrett, Antibacterial Silver, Met. Based Drugs, 1994, 1(5-6), p 467-482CrossRefGoogle Scholar
  37. 37.
    L. Zhao and M.A. Ashraf, Influence of ag/HA Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism. West Indian Med. J., 2015, 64(5), p 506-513.  https://doi.org/10.7727/wimj.2016.179 CrossRefGoogle Scholar
  38. 38.
    Y. Ghani, M.J. Coathup, K.A. Hing, and G.W. Blunn, Development of a Hydroxyapatite Coating Containing Silver for the Prevention of Peri-Prosthetic Infection, J. Orthop. Res., 2011, 30(3), p 356-363CrossRefGoogle Scholar
  39. 39.
    M. Miranda, A. Fernandez, M. Diaz, L. Esteban-Tejeda, S. Lopez-Esteban, F. Malpartida, R. Torrecillas, and J.S. Moya, Silver-Hydroxyapatite Nanocomposites As Bactericidal and Fungicidal Materials, Int. J. Mater. Res., 2010, 101(1), p 122-127.CrossRefGoogle Scholar
  40. 40.
    F.A.C. Andrade, L.C.O. Vercik, F.J. Monteiro, and E.C.S. Rigo, Preparation, Characterization and Antibacterial Properties of Silver Nanoparticles-Hydroxyapatite Composites By a Simple and Eco-Friendly Method, Ceram. Int., 2016, 42(2), p 2271-2280CrossRefGoogle Scholar
  41. 41.
    X. Zhang, W. Chaimayo, C. Yang, J. Yao, B.L. Miller, and M.Z. Yates, Silver-Hydroxyapatite Composite Coatings with Enhanced Antimicrobial Activities Through Heat Treatment, Surf. Coat. Technol., 2017, 325, p 39-45CrossRefGoogle Scholar
  42. 42.
    W. Chen, S. Oh, A.P. Ong, N. Oh, Y. Liu, H.S. Courtney, M. Appleford, and J.L. Ong, Antibacterial and Osteogenic Properties of Silver-Containing Hydroxyapatite Coatings Produced Using a Sol Gel Process, J. Biomed. Mater. Res. A, 2007, 82A(4), p 899-906CrossRefGoogle Scholar
  43. 43.
    C. Fu, X. Zhang, K. Savino, P. Gabrys, Y. Gao, W. Chaimayo, B.L. Miller, and M.Z. Yates, Antimicrobial Silver-Hydroxyapatite Composite Coatings Through Two-Stage Electrochemical Synthesis, Surf. Coat. Technol., 2016, 301, p 13-19CrossRefGoogle Scholar
  44. 44.
    N. Sanpo, M.L. Tan, P. Cheang, and K.A. Khor, Antibacterial Property of Cold-Sprayed HA–Ag/PEEK Coating, J. Therm. Spray Technol., 2008, 18(1), p 10-15CrossRefGoogle Scholar
  45. 45.
    H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Cryst., 1967, 22, p 151-152CrossRefGoogle Scholar
  46. 46.
    B. Gonzalez, N. Calvar, E. Gomez, and A. Dominguez, Density, Dynamic Viscosity, and Derived Properties of Binary Mixtures of Methanol or Ethanol With Water, Ethyl Acetate, and Methyl Acetate at T = (293.15, 298.15, and 303.15)K, J. Chem. Thermodyn., 2007, 39(12), p 1578-1588CrossRefGoogle Scholar
  47. 47.
    W.A. Dollase, Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model, J. Appl. Crystallogr., 1986, 19(4), p 267-272CrossRefGoogle Scholar
  48. 48.
    L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58(5), p 570-592CrossRefGoogle Scholar
  49. 49.
    G. Bolelli, D. Bellucci, V. Cannillo, L. Lusvarghi, A. Sola, N. Stiegler, P. Muller, A. Killinger, R. Gadow, L. Altomare, and L. de Nardo, Suspension Thermal Spraying of Hydroxyapatite: Microstructure and In Vitro Behaviour, Mater. Sci. Eng. C, 34, 2014, p 287-303CrossRefGoogle Scholar
  50. 50.
    B. Zheng, Y. Luo, H. Liao, and C. Zhang, Investigation of the Crystallinity of Suspension Plasma Sprayed Hydroxyapatite Coatings, J. Eur. Ceram. Soc., 2017, 37(15), p 5017-5021CrossRefGoogle Scholar
  51. 51.
    H. Xu, X. Geng, G. Liu, J. Xiao, D. Li, Y. Zhang, P. Zhu, and C. Zhang, Deposition, Nanostructure and Phase Composition of Suspension Plasma-Sprayed Hydroxyapatite Coatings, Ceram. Int., 2016, 42(7), p 8684-8690CrossRefGoogle Scholar
  52. 52.
    R.T. Candidato, P. Sokolowski, L. Pawlowski, G. Lecomte-Nana, C. Constantinescu, and A. Denoirjean, Development of Hydroxyapatite Coatings by Solution Precursor Plasma Spray Process and Their Microstructural Characterization, Surf. Coat. Technol., 2017, 318, 39-49CrossRefGoogle Scholar
  53. 53.
    L. Latka, L. Pawlowski, D. Chicot, C. Pierlot, and F. Petit, Mechanical Properties of Suspension Plasma Sprayed Hydroxyapatite Coatings Submitted to Simulated Body Fluid, Surf. Coat. Technol., 2010, 205(4), p 954-960CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. Cizek
    • 1
  • V. Brozek
    • 1
  • T. Chraska
    • 1
  • F. Lukac
    • 1
  • J. Medricky
    • 1
  • R. Musalek
    • 1
  • T. Tesar
    • 1
  • F. Siska
    • 2
  • Z. Antos
    • 3
  • J. Cupera
    • 3
  • M. Matejkova
    • 3
  • Z. Spotz
    • 3
  • S. Houdkova
    • 4
  • M. Kverka
    • 5
  1. 1.Institute of Plasma PhysicsThe Czech Academy of SciencesPragueCzech Republic
  2. 2.Institute of Physics of MaterialsThe Czech Academy of SciencesBrnoCzech Republic
  3. 3.Institute of Materials Science and EngineeringBrno University of TechnologyBrnoCzech Republic
  4. 4.New Technologies Research CentreUniversity of West BohemiaPilsenCzech Republic
  5. 5.Institute of MicrobiologyThe Czech Academy of SciencesPragueCzech Republic

Personalised recommendations