Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 8, pp 1381–1387 | Cite as

Plasma-Sprayed Hydroxyapatite Coating for Improved Corrosion Resistance and Bioactivity of Magnesium Alloy

  • Ya Li Gao
  • Yu Liu
  • Xue Ying Song
Peer Reviewed
  • 38 Downloads

Abstract

In the present study, the corrosion resistance and bioactivity of AZ91HP magnesium alloy were improved by plasma spraying hydroxyapatite (HA) coating. X-ray diffraction measurements indicated that the coating formed amorphous and little β-Ca3 (PO4)2 besides of HA. The corrosion resistance and bioactivity of the coating and magnesium alloy in simulated body fluid were investigated using immersion test. The coating showed lower corrosion rate and better bioactivity than magnesium alloy. The coating significantly improved the hydrophilicity of Mg alloy. The prothrombin time of the coating was 18 s, and the prothrombin time of Mg alloy was 11 s, so the coating had better anticoagulant activity.

Keywords

bioactivity corrosion resistance hydroxyapatite coating magnesium alloy plasma spraying 

Notes

Acknowledgments

This research was supported by the funding from the National Natural Science Foundation of China (NSFC. No 51704073), Jilin Province Department of Education “Thirteen Five” science and technology research project of China (No. JJKH20180427KJ), and Science and Technology Development of Jilin Province (No. 20180520065). Jilin City Science and Technology Bureau Outstanding Young Talents Training Project (No. 201831785).

References

  1. 1.
    M. Yazicia, A.E. Gulec, M. Gurbuz, Y. Gencer, and M. Tarakci, Biodegradability and Antibacterial Properties of MAO Coatings Formed on Mg-Sr-Ca Alloys in an Electrolyte Containing Ag Doped Hydroxyapatite, Thin Solid Films, 2017, 644, p 92-98CrossRefGoogle Scholar
  2. 2.
    D.-J. Lin, F.-Y. Hung, M.-L. Ye, H.-P. Lee, and T.-S. Lui, Development of a Novel Micro-textured Surface Using Duplex Surface Modification for Biomedical Mg Alloy Applications, Mater. Lett., 2017, 206, p 9-12CrossRefGoogle Scholar
  3. 3.
    S.T. Jiang, J. Zhan, S.Z. Shun, and M.F. Chen, The Formation of FHA Coating on Biodegradable Mg-Zn-Zr Alloy Using a Two-step Chemical Treatment Method, Appl. Surf. Sci., 2016, 388, p 424-430CrossRefGoogle Scholar
  4. 4.
    Y. Feng, S. Zhu, L. Wang, L. Chang, B. Yan, X. Song, and S. Guan, Characterization and Corrosion Property of Nano-rod-like HA on Fluoride Coating Supported on Mg-Zn-Ca Alloy, Bioact. Mater., 2017, 2(2), p 63-70CrossRefGoogle Scholar
  5. 5.
    Y. Yun, Z.Y. Dong, D.E. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z.G. Xu, P. Kumta, and C. Sfeir, Biodegradable Mg Corrosion and Osteoblast Cell Culture Studies, Mater. Sci. Eng. C, 2009, 29(6), p 1814-1821CrossRefGoogle Scholar
  6. 6.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26(17), p 3557-3563CrossRefGoogle Scholar
  7. 7.
    M. Bornapour, M. Celikin, M. Cerruti, and M. Pekguleryuz, Magnesium Implant Alloy with Low Levels of Strontium and Calcium: the Third Element Effect and Phase Selection Improve Bio-corrosion Resistance and Mechanical Performance, Mater. Sci. Eng. C, 2014, 35, p 267-282CrossRefGoogle Scholar
  8. 8.
    R. Maurya, A.R. Siddiqui, and K. Balani, In Vitro Degradation and Biomineralization Ability of Hydroxyapatite Coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys, Surf. Coat. Technol., 2017, 325, p 65-74CrossRefGoogle Scholar
  9. 9.
    J. Park, H.-S. Han, J. Park, H. Seo, J. Edwards, Y.-C. Kim, M.-R. Ok, H.-K. Seok, and H. Feon, Corrosion Behavior of Biodegradable Mg-based Alloys via Femtosecond Laser Surface Melting, Appl. Surf. Sci., 2018, 448, p 424-434CrossRefGoogle Scholar
  10. 10.
    R.M. Kumar, K.K. Kuntal, S. Singh, P. Gupta, B. Bhushan, P. Gopinath, and D. Lahiri, Electrophoretic Deposition of Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopaedic Application, Surf. Coat. Technol., 2016, 287, p 82-92CrossRefGoogle Scholar
  11. 11.
    A. Abdal-hay, N.A.M. Barakat, and J.K. Lim, Hydroxyapatite-doped Poly (lactic acid) Porous Film Coating for Enhanced Bioactivity and Corrosion Behavior of AZ31 Mg Alloy for Orthopedic Applications, Ceramics International, 2013, 39(1), p 183-195CrossRefGoogle Scholar
  12. 12.
    Q. Murtaza, J. Stokes, and M. Ardhaoui, Experimental Analysis of Spray Dryer used in Hydroxyapatite Thermal Spray Powder, J. Therm. spray Technol., 2012, 21(5), p 963-974CrossRefGoogle Scholar
  13. 13.
    R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomaterialia, 2014, 10, p 557-579CrossRefGoogle Scholar
  14. 14.
    A. Pragatheeswaran, P.V. Ananthapadmanabhan, Y. Chakravarthy, V. Chaturvedi, S. Bhandari, and K. Ramachandran, Plasma Spray Deposition of Lanthanum Phosphate and Phase structure of the Resultant Coating, J. Therm. spray Technol., 2015, 24(8), p 1377-1384CrossRefGoogle Scholar
  15. 15.
    R.S. Pillai, M. Frasnelli, and V.M. Sglavo, HA/β-TCP Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceramics International, 2018, 44(2), p 1328-1333CrossRefGoogle Scholar
  16. 16.
    G. Singh, H. Singh, and B.S. Sidhu, Characterization and Corrosion Resistance of Plasma Sprayed HA and HA-SiO2 Coatings on Ti-6Al-4V, Surf. Coat. Technol., 2013, 228, p 242-247CrossRefGoogle Scholar
  17. 17.
    M.R. Mansura, J. Wang, and C.C. Berndt, Microstructure, Composition and Hardness of Laser-assisted Hydroxyapatite and Ti-6Al-4V Composite Coatings, Surf. Coat. Technol., 2013, 232, p 482-488CrossRefGoogle Scholar
  18. 18.
    H. Khandelwal, G. Singh, K. Agrawal, S. Prakash, and R.D. Agarwal, Characterization of Hydroxyapatite Coating by Pulse Laser Deposition Technique on Stainless Steel 316L by Varying Laser Energy, Appl. Surf. Sci., 2013, 265, p 30-35CrossRefGoogle Scholar
  19. 19.
    R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4 V) and the same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935-943CrossRefGoogle Scholar
  20. 20.
    Y. Otsuka, H. Kawaguchi, and Y. Mutoh, Cyclic Delamination Behavior of Plasma–sprayed Hydroxyapatite Coating on Ti-6Al-4V Substrates in Simulated Body Fluid, Materi. Sci. Eng. C, 2016, 67, p 533-541CrossRefGoogle Scholar
  21. 21.
    Y. Wang, T. Fan, and Z. Zhou, Hydroxyapatite Coating with Strong (002) Crystallographic Texture Deposited by Micro–plasma Spraying, Mater. Lett., 2016, 185, p 484-487CrossRefGoogle Scholar
  22. 22.
    M.S. Sadjadi, H.R. Ebrahimi, M. Meskinfam, and K. Zare, Silica Enhanced Formation of Hydroxyapatite Nanocrystals in Simulated Body Fluid (SBF) at 37°C, Mater. Chem. Phys., 2011, 130(1–2), p 67-71CrossRefGoogle Scholar
  23. 23.
    H. Tanigawa, H. Asoh, T. Ohno, M. Kubota, and S. Ono, Electrochemical Corrosion and Bioactivity of Titanium-hydroxyapatite Composites Prepared by Spark plasma Sintering, Corrosion Science, 2013, 70, p 212-220CrossRefGoogle Scholar
  24. 24.
    A. Mochizuki and H. Kaneda, Study on the Blood Compatibility and Biodegradation Properties of Magnesium Alloys, Mater. Sci. Eng. C, 2015, 47, p 204-210CrossRefGoogle Scholar
  25. 25.
    S. Zhu, N. Huang, H. Shu, Y. Wu, and L. Xu, Corrosion Resistance and Blood Compatibility of Lanthanum Ion Implanted Pure Iron by MEVVA, Appl. Surf. Sci., 2009, 256, p 99-104CrossRefGoogle Scholar
  26. 26.
    P.S. Prevey, X-ray Diffraction Characterization of Crystallinity and Phase Composition in Plasma-sprayed Hydroxyapatite Coatings, J. Therm. spray Technol., 2000, 9(3), p 369-376CrossRefGoogle Scholar
  27. 27.
    T. Hanas, T.S.S. Kumar, G. Perumal, M. Doble, and S. Ramakrishna, Electrospun PCL/HA Coating Friction Stir Processed AZ31/HA Composites for Degradable Implant Applications, J. Mater. Proce. Techno., 2018, 252, p 384-406Google Scholar
  28. 28.
    L. Jiang, L. Jiang, C. Xong, and S. Su, Improving the Degradation Behavior and In vitro Property of Nano-hydroxyapatite Surface-grafted with the Assist of Citric Acid, Colloids and surface B: Bioninterfaces, 2016, 146, p 234-328CrossRefGoogle Scholar
  29. 29.
    R.B. Heimann, Plasma-sprayed Hydroxyapatite-based Coatings: Chemical, Mechanical, Microstructural and Biomedical Properties, J. Therm. spray Technol., 2016, 25, p 827-850CrossRefGoogle Scholar
  30. 30.
    R. Palanivelu, S. Kalaniathan, and A.R. Kumar, Characterication Studies on Plasma Sprayed (AT/HA) Bi-layered Nanoceramics Coating on Biomedical Commercially Pure Titanium Dental Implant, Ceramics Internation, 2014, 40, p 7745-7751CrossRefGoogle Scholar
  31. 31.
    Y. Gao, C. Wang, M. Yao, and H. Liu, Corrosion Behavior of Laser Melted AZ91HP Magnesium Alloy, Mater. Corro., 2007, 58(6), p 463-466CrossRefGoogle Scholar
  32. 32.
    G. Yali, D. Xiong, W. Cunshan, and C. Yongzhe, Influences of Laser Powers on Microstructure and Properties of the Coatings on the AZ91HP Magnesium Alloy, Acta Metall. Sin., 2009, 22(3), p 167-173CrossRefGoogle Scholar
  33. 33.
    W. Fan, Fabrication of Hydroxyapatite Coating on the Surface of AZ31 Magnesium Alloy by Sol-gel Technique and Research of the Property, Master Paper of Taiyuan University of Technology, China, Taiyuan, 2015, p 26Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNortheast Dianli UniversityJilinChina

Personalised recommendations